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PREFACE 

 

This dissertation proposes a framework (TruSStReMark - Trust-based Selection and 

Recommendation for Online Software Marketplaces) to model, quantify, and monitor trust 

of software applications (i.e., apps – also in the context of this dissertation, we use terms 

services and apps interchangably) and to perform trust-based service selection and 

recommendations. It provides methods to analyze and aggregate external reviews, 

pertaining to specific QoS attributes, of software apps by performing subjective logic-

based operations. This framework, first, defines trust of a software apps using theory of 

belief and extends the multi-level software specifications to represent the trust-based 

attributes. It, then, proposes enhancements to two prevalent algorithms for selecting and 

recommending software apps from a marketplace. Finally, the performances of the 

enhanced selection and recommendation algorithms are improved by parallelizing them. 

When compared with the prevalent Content-based and Collaborative filtering-based 

approaches, the results show that, the TruSStReMark is able to produce better results in 

terms of quality measured using HR (Hit Ratio) and ARHR (Average Reciprocal Hit-Rank) 

metrics. In addition, the parallelized versions of the trust-based selection and 

recommendation algorithms improve the end-to-end runtime. The TruSStReMark will 

enable users to select apps, which are trustworthy from online software marketplaces and 

use them in composing quality-aware software systems. 
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 ABSTRACT 

Pileththuwasan Gallege, Lahiru Sandakith. Ph.D., Purdue University, December 2016. 
Trust-based Service Selection and Recommendation for Online Software Marketplaces 
(TruSStReMark). Major Professor: Rajeev R. Raje. 
 

Nowadays, a vast number of heterogeneous devices exist, which are connected to their 

corresponding online marketplaces over the Internet. These marketplaces contain large 

volumes of individually produced and maintained software applications (i.e., apps) which 

can be dynamically installed into these devices. Hence, these complex devices now contain 

a dynamic software system where applications should seamlessly work together with 

underlying hardware platform. When users of these devices need to consume a software 

service (or to use a software application, i.e., app – also in this context, we use terms 

services and apps interchangably), they would search and install these apps from those 

linked online marketplaces. Moreover, app providers and device administrators can 

recommend apps for users, possibly targeting a selected set of devices. Hence, the selection 

and recommendation mechanisms play an important role in identifying the necessary (and 

possibly sufficient) set of individual apps which match to a users’ requirements.  

Due to the dynamic nature of the software apps, there exists an inherent difference in 

selecting and recommending physical products and software apps. Therefore, product-

based recommendation techniques cannot be directly applied to recommending online apps 

which are updated frequently by changing their internals such as the source code and 

libraries. 
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Analyzing famous software marketplaces reveal that finding the best app that matches 

with device properties and users’ requirements is a task assigned to user. However, online 

software marketplaces could be more effective if they could provide better search and 

recommendation results. If the trustworthiness of individual app is identified and quantified, 

it enables dynamic integration of apps to produce robust composed software systems. 

Therefore, identifying and quantifying the trust of these publicly available apps become 

prerequisites for providing better (i.e., more trustworthy) search and recommendation 

results from online marketplaces. However, this is challenging since the trustworthiness of 

these apps is affected by the heterogeneity found in associated set of evidence and opinions, 

the dynamic nature of trust, and the presence of uncertainty. Moreover, the trust of a app is 

not a static value. If the trustworthiness of an app is quantified, it should then be updated 

periodically to reflect the dynamic nature of the software development cycle. Therefore, 

identifying the trust of an individual app and a composed system is not a trivial task. To 

achieve this task, there is a need to aggregate and monitor the trust of individual apps in a 

continuing manner. 

The approach proposed by this dissertation quantifies the trust of a software app using 

available data (e.g., external evidence which describe these apps, such as app feature 

descriptions, developer comments and user reviews etc.) following an evidence-based 

approach using subjective logic operations. The steps in this quantification process are to 

conduct a literature survey about existing views of trust, to define a trust model, and to use 

that model to monitor the trust of public apps available form software marketplaces. The 

results and the knowledge gained in quantifying trust is employed to improve the app 

selection and recommendation processes. The proposed approach identifies abstract 
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structures of prevalent app selection and recommendation algorithms and then enhances 

these prevalent algorithms to include trustworthy service selection and recommendation 

principles.  

This work (named - TruSStReMark) also performs various experiments and compares 

the enhanced algorithms with prevalent approaches. These trust-based algorithms are 

categorized into two phases - an offline phase (i.e., ETL -Extract, Transform and Load, 

categorization and organization of available evidence) and an online phase (i.e., execution 

of the algorithms to analyze collection of evidence in real-time). Next, the TruSStReMark 

framework is parallelized using MapReduce concepts using the Hadoop framework which 

improves its performance to produce results in near real-time. Furthermore, with the 

availability of new technologies the overall performance is improved by removing Hadoop-

based batch oriented processing with the adaptation of Spark and Spark Streaming to 

improve the efficiency of both online and offline phases.  Publically available mobile app 

apps from the Android and Amazon app marketplaces are investigated (as the datasets) to 

empirically validate the proposed approach. 
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CHAPTER 1. INTRODUCTION 

Nowadays, concepts related to the Internet of Things (IoT) [1] are popular among 

software research and development communities. IoT concepts allow networking of 

different physical devices (such as computers, mobiles, appliances, vehicles, etc.) to 

communicate over the Internet. As the number of these devices increase, it is estimated that 

by 2020 the IoT global network will consist of almost 50 billion devices [2]. These 

heterogeneous devices are connected to their corresponding online marketplaces to 

download their required software updates and install new applications (i.e., apps1). Hence, 

each different type of device (i.e., which hosts several active artifacts inside its environment) 

can now search, install, update, or get recommended suitable software artifacts seamlessly 

downloaded to these devices. 

A large collection of such publicly available apps from one environment are organized 

into a software marketplace. Examples of such online service marketplaces are Amazon 

Marketplace [3] (i.e., Amazon’s Software Application Marketplace targeting Android and 

Fire Operating System (FireOS) based devices), Ubuntu Marketplace [4] (i.e., Canonical’s 

Software Application Marketplace targeting Ubuntu OS based devices), and Google Play 

Marketplace [5] (i.e., Google’s Application Marketplace targeting Android based devices). 

Table 1-1 gives a list of popular online software makrtplaces including their targeted 

platforms.

1 In the context of this dissertation, the term ‘Apps’ refers to software applications and/or services 
installed on those above-mentioned heterogeneous devices. Also in the context of this this dissertation 
we use terms services and apps interchangeably. 
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Service Oriented Architecture (SOA) concepts allow many independent service 

providers to develop different apps for the same set of requirements. Figure 1.1 indicates 

how the concepts from Service Oriented Architecture (SOA) are applied to online software 

marketplaces. The main difference between SOA Concepts (i.e., left section of Figure 1.1) 

and marketplaces (i.e., right section of Figure 1.1) is that marketplaces allow limited or no 

interactions between devices and service builders.  

 

 

Online app marketplaces intercept all communication between devices and builders. 

Third-party app builders who upload/update their artifacts to marketplaces and devices 

which download and install/update these artifacts from marketplaces. As many instances 

for a specific app requirement are available, app consumers are presented with the task of 

selection (i.e., evaluate different instances, compare them and make a choice).   

Table 1-1 List of major online software marketplace information 2 

Marketplace Owner Base Platform Restrictions 
Amazon Appstore [3] Amazon Inc. Android Fire OS 
Ubuntu Appstore [4] Canonical Inc. Ubuntu OS All Versions 

Google Play [5] Google Inc. Android All Versions 
Apple Appstore [6] Apple Inc. iOS All Versions 

BlackBerry World [7] BlackBerry Inc. BlackBerry OS Tablet OS 
Microsoft Phone Store [8] Microsoft Inc. Windows Mobile All Versions 

Microsoft Store [9] Microsoft Inc. Windows All Versions 
Amazon Software Store [10] Amazon Inc. Any All Versions 
Google WebApps Store [11] Google Inc. Web Applications All Versions 

2 Amazon, FireOS, Ubuntu, Canonical, Google, Apple, iOS, Blackberry, Windows, and Microsoft are 
trademarks of the respective entities. 
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Figure 1.1  SOA based concepts are applied to online serivce marketplaces 

 

Due to limited interactions between device owners and service builders, there is a lack 

of trust which present a challenge for service selection and recommendations. Therefore, 

marketplaces should include information related to the trustworthiness of its artifacts, which 

is the main focus of this dissertation (in Figure 1.2). 

 
Figure 1.2 Lack of communication between devices and service builders which raises 

challenges related to trustworthiness 
 



www.manaraa.com

4 
 

When considering efforts, time and cost factors to build apps themselves, the service 

consumers are forced to take advantage of current features from these service marketplaces 

and are encouraged to design and compose software systems by reusing such public apps. 

These marketplaces could also recommend apps to their consumers based on their domains 

and interests. As more software systems are designed by composing independently 

developed apps, identifying the trust of these different service instances becomes a 

prerequisite for assembling any trustworthy software system (e.g., Plug and play platforms 

present in mobile devices).  

The concept of trust is highly subjective in nature and is affected by many associated 

evidence3 and opinions [12]. In contrast to other domains, such as economics and social 

sciences, the trust aspects of software (specifically in the context of public software apps 

hosted by different venders) are yet to be standardized.  Our previous survey [13] confirmed 

this fact (i.e., non-existence of a governing definition of trust) by analyzing publications 

which discuss the trustworthiness of software apps. This survey identified 80 relevant peer-

reviewed papers and analyzed how each of them views the trust aspect of the software (or 

apps). Various trust definitions of software from these papers include views ranging from 

simple (such as, “Trust can be simplified to two important factors reputation and 

competence” [14] – Shou-xin et al. 2009) to more complex (such as, “An entity can be 

trusted if it always behaves in the expected manner for the intended purpose” [15] - Trusted 

Computing Group 2002).   

This dissertation (in CHAPTER 5) includes a summary of the survey of trust views and 

the proposed principles for developing software systems considering trust from the 

beginning, rather than  consider trust as an afterthought in the context of software 
3 In this dissertation, the term evidence is referring to the plural noun (i.e., to represent collection of 
evidence). 
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development process. Based on the findings of our survey [13], our definition of the trust 

of a software service is also related to the definition proposed by the Trusted Computing 

Group above. Hence, we define the trust associated with a software service as “the degree 

of conformance of its behavior (both functional and non-functional) to its published 

specification (or set of contracts)”.  

As there is no standardized definition of trust, in the context of software systems, the 

traditional way to represent trust is to include it as another quality of service (QoS) attribute. 

However, this representation has limited value at the time of service selection, where 

individual service contracts and other relevant information are matched against existing 

system requirements. Considering the trust of a service as one QoS attribute (i.e., confidence 

about its other attributes and behavior) fails to present many details such as how trust is 

aggregated over time.  Trust being yet another QoS attribute also does not provide the 

additional rationale necessary to explain why a particular service was given a specific score 

by its users. As highlighted by the related works section in CHAPTER 2 (i.e., most of the 

work based on [16] and [17]), this issue is one of the significant limitation of prevalent 

approaches. If the trust of a service is considered as an aggregated measure of the evidences 

and opinions about the confidence of the service behavior (under various operating 

conditions), then the service selection mechanism is presented with additional information 

and can use this information more effectively. 

In addition, the trust of a service is not a static value. Due to changes in operating 

conditions, the trust of a service can fluctuate over time.  For example, in a shorter time 

frame, because of the change in current work load of a server, the apps’ ability to provide 

certain QoS can change. Similarly, over a long time frame, an updated version of a service 
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may introduce additional bugs which were not present in an earlier version of that service 

and may change the trust value. Considering public apps, if the trustworthiness of these apps 

is identified and quantified, these trust values could be updated periodically to address both 

short-term and long-term variations of the trustworthiness of the software service.  

 
Figure 1.3 Number of apps available from each marketplace (Statistra [18]) 
 

For example, let us consider a device platform (i.e., mobile device) searching for a 

software application which operates on a resource constrained device. The Android platform 

[19] includes software-based applications which communicate with apps inside the device 

(e.g., notification apps) and apps outside the device (e.g., data apps typically hosted in the 

cloud). An example of such a service is a weather forecasting service, and there are many 

variations of this type of service are publically available from different external vendors 

such as Yahoo Weather Service [20] and Weather Channel App [21]. However, it is 

important to note that this service requirement can be filled with either using one such 

service or using a set of apps. Also, the requirements (for a mobile weather forecasting 
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service) are complex and have both functional (i.e., feature availability, timeliness, and 

accuracy of the results) and non-functional aspects (i.e., text and image resolution, battery 

power usage, and response time), and these requirements vary depending on different inputs 

and output types. However, given a fixed set of requirements, the service selection process 

can search for suitable candidates for mobile weather apps. The issue is to find the best 

match given that different vendors could compete to provide same service covering various 

aspects of the set of requirements. Figure 1.3 indicates statistics from 2015 and 2016 on 

how these marketplaces are exploding with new apps and applications forming a big-data 

challenges. 

On the other hand, service marketplaces can recommend candidate apps too. Both cases 

inspect public service repositories (i.e., service marketplaces listed in Table 1-1), such as 

Amazon software marketplace [3] and Android Marketplace [5], to produce a set of 

candidate apps from different vendors to the consumer for a specific requirement. Some 

requirements, such as low power usage, can only be evaluated by evidence based 

approaches (e.g., no activity or bugs exist related to draining energy rapidly from the 

device). However, these evidence-based evaluations are also time sensitive and can only be 

evaluated using up-to-date external information (e.g., user reviews which get updated 

periodically in real-time). Again, this observation motivates us to aggregate and monitor the 

trust of individual apps as a continuing activity. 

Therefore, the service selection process can benefit from availability of a trust contract 

which contains a summary of the various trust related information as a part of the service 

specification.  This dissertation proposes to include trust attributes inside the prevalent 

structure of the software specifications. These trust attributes can correlate to other software 
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attributes (e.g., service API signature) from all levels of software specification. Such a 

correlation provides a better way to explain why a particular service was given its current 

trust score. Aggregating these scores over time can provide additional information to 

effectively address queries about the trustworthiness of apps. 

When a software service is selected for a given set of requirements, the process of 

selection can be measured based on the quality of results (e.g., relative ranking of the results 

and possible other recommendations). With the recent popularity of both product and 

software marketplaces, it is natural to compare these marketplaces by the process of 

selecting and recommending a physical product and a software service. Prevalent 

approaches of product-based ranking and recommendation do not consider the information 

about the items (i.e., a product) beyond attribute-value pairs. For example, one widely 

accepted technique is Item-Item Collaborative Filtering (CLF) [16]. It is based on the 

concept of “similar users buy similar items”. It does not consider item details and the 

algorithm works on a large (typically very sparse) User-Item matrix. The other prominent 

technique for ranking and recommendation is Content-based Filtering (CBF) [17]. It does 

consider item details; however, it models the item details using quantifiable attribute-value 

pairs. Background concepts of CBF and CLF techniques are presented in CHAPTER 3 

(Section 3.2). 

The goal of these two techniques (or their combination) is to rank and recommend 

items using a similarity-function (such as cosine similarity or Pearson correlation 

comparison techniques). Compared to products, reusable software apps (such as software-

based mobile applications and online data apps) are hard to describe using a set of fixed 

attribute-value pairs or using user-item relationships, due to the dynamic nature of software 
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apps. Despite similarities between software apps and physical products, there are many 

subtle differences between them. As described in our survey [13], these main differences 

are: 1) dynamic updates that are very common in software apps, 2) variable quality of 

service (QoS) agreements between users and the service providers, 3) purpose of these apps 

being different such as some apps are used to compose systems out of individual software 

apps, and 4) variable subscription-based payment methods (e.g., based on load, time of the 

day etc.). Therefore, due to these associated challenges, it is not easy or straightforward to 

apply product-based ranking and recommendation techniques to the software apps domain. 

The challenge can be further emphasized using the following two types of service 

selection and recommendation sample use cases. Case 1: a user’s goal is to operate a set of 

apps as individual and distinct entities (i.e., they do not attempt to relate or compose the 

apps together), and Case 2: a user’s goal is to select apps to integrate with other apps in the 

context of creating a composed system.  The first scenario (Case 1) is somewhat similar to 

the conditions which are present in product selection, which forces us to view a software 

service through the lens of a traditional product. However, the dimensions of a product and 

the dimensions of software do not compare well with each other. For example, a typical 

product description considers its physical features (such as color, dimensions, weight, etc.) 

and the confidence associated with these features are certain and measurable. In contrast, 

software apps consist of more complex features (such as different QoSs - e.g., response 

time and accuracy of a weather forecasting service) and the confidence associated with 

these measurements is uncertain and dependent upon various factors (i.e., QoSs vary 

according to the current state of the execution environment).  
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Considering the second scenario (Case 2), if the apps are to interact with other apps, a 

simple attribute-based selection ranking and recommendation, suggested by prevalent 

approaches, will fall short due to various factors such as input/output compatibility and 

modes of communication. To provide better selection rankings and recommendations, it is 

necessary to measure or keep track of additional levels of information about a software 

service such as details about its contract attributes from its specification. For example, a 

service’s Multi-Level Specification (MLS), including its syntax, semantics, and QoS levels, 

is needed for such a selection and recommendation process. Hence, to leverage various 

evidences (e.g., specifications) related to a software service, this dissertation proposes an 

evidence-based approach to rank and recommend software-based entities to be integrated 

into a system, while considering dependency and association between apps. Other 

challenges in quantifying the trust of these apps are: the heterogeneity in associated 

evidences and opinions, the difficulty associated with leveraging additional external and 

internal information from a software based service (e.g., aggregating credible evidences 

from related user reviews and test reports), the dynamic nature of trust, the presence of 

uncertainty, and the difficulty with mapping existing techniques to the environment of a 

service marketplace (such as how the user-item relationship is formed with the presence of 

large number of anonymous users). 

To address these challenges, this dissertation has taken a holistic view in quantifying 

the trust of a service. This view has two aspects – an internal view which uses all internal 

facets (e.g., programmatic artifacts such as specifications, test logs, association between 

related apps, etc.) and an external view which uses non-programmatic artifacts such as user 

reviews posted in public marketplaces. Although the emphasis of this work is mainly 
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focused on external view, these two views are merged using evidence-based techniques. 

Different evidences available are also aggregated and merged using evidence-based 

techniques (such as theory of belief [22], principles of subjective logic [23]), and Natural 

Language Processing (NLP) techniques [24] (such as sentiment analysis [25]). This merger 

not only assigns a trust score to a service but also reduces the associated uncertainty.  

The proposed selection and recommendation method modifies both the CBF and CLF 

algorithms to include trust-based calculations. This approach (named “Trust-based Service 

Selection and Recommendation for Online Software Marketplaces” – in short as 

“TruSStReMark”) performs various experiments and compares the enhanced algorithms 

with prevalent approaches. Our approach is categorized into two phases called as online 

and offline phases. The offline phase performs scraping of evidences from marketplace, 

organize and cleansed them into a data warehouse (i.e., ETL -Extract, Transform and Load, 

categorization and organization of evidences). The online phase uses the data warehouse 

to generate and update metadata related to trust contracts and to perform analysis (i.e., 

execution of the algorithms to analyze evidences in real-time). Real-time analysis of 

evidences for one service is fast enough to perform in a single computing node, however, 

the next step was to improve our solution to perform parallel quarries from different users 

and handle the load of a real marketplace. As the number of apps and number of parallel 

queries (roughly indicated by number of downloads) increases (Figure 1.3), both online 

and offline phases needed modifications such that they can perform analysis and produce 

results in real-time. When loaded with parallel user quarries to simulate an online service 

marketplace, the performance of these evidence-based operations in both phases are 

affected as a result of these modifications. Hence, we then parallelizes our approach and 
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these enhanced algorithms to improve the performance using the Hadoop echo-system [26] 

by placing the external evidences (generated as a results of offline phase) in Hadoop 

Distributed File System (HDFS) [27] and executing MapReduce [28] jobs frequently to 

update the trust-based scores and service metadata used by the real-time queries. These sets 

of experiments and analysis of this technique revealed that the concepts related to batch 

oriented operations in Hadoop is a bottleneck and hinder the overall performance. 

Therefore, as the final step of this dissertation, the overall performance is improved by 

removing Hadoop-based batch oriented processing with the adaptation of Spark [29] and 

Spark Streaming [30] to improve the efficiency of both online and offline phases. Further 

details about the steps in our approach are presented in CHAPTER 4. 

In summary, the methods proposed by this dissertation first define the trust of a 

software service, suggest a concrete format for a trust contract, monitor the trust of public 

apps as a long-term activity, update trust contracts periodically (which are maintained as a 

separate part of the service specification), and use the aggregated trust related attributes over 

time to improve the service selection and recommendation process. The proposed 

trustworthy service selection and recommendation algorithms, which are enhancements of 

the two prevalent approaches, for software marketplaces perform better with respective to 

the quality of the results in root mean square error, precision, recall, Hit-Rate (HR), and 

Average Reciprocal Hit-Rate (ARHR) matrices when compared with the same two 

prevalent (CBF and CLF) approaches. Furthermore, with the availability of new 

technologies the overall end-to-end performance is improved by using Hadoop and Spark 

echo-systems to improve the efficiency of both online and offline phases. 
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1.1 Thesis Statement 

The thesis statement can be summarized to a short sentence as “we believe that 

analyzing trust-based properties of software apps from publically available data can be 

used to improve selection and recommendations in online software marketplaces”. This 

statement is expanded more broadly into the following sub-statements: 

 

• Having a comprehensive and holistic view of the trust of a software app or service and 

representing trust attributes of software apps inside a software specification (as a trust 

contract) can improve selection and recommendation of software apps and services 

hosted in current service marketplaces.  

• Periodically calculating, aggregating and analyzing trust-based evidences of software 

apps and services over time (from both public and private data sources) using modified 

algorithms with necessary parallelization could improve user experience related to 

selection and recommendation in service marketplaces.  

 

1.2 Thesis Objectives 

The specific objectives of this thesis are:  

1) To formally define the trust of a software app or service and propose the evidence 

based model for trustworthy software development. 

2) To propose a long term evidence aggregation scheme for software apps and services 

to quantify trust using theory of belief and sentiment analysis. 

3) To represent trust attributes of a software app or service using a trust contract and 

indicate its application in software selection and recommendation in an online 

marketplace environment.  
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4) To modify and improved trustworthy service selection and recommendation 

algorithms with necessary parallelization for software marketplaces which perform 

better in precision and recall matrices.  

 

1.3 Thesis Organization 

The remaining part of the thesis is organized as follows: CHAPTER 2 presents the 

related works. Next, CHAPTER 3 includes the background concepts related to this 

dissertation such as summaries of previous work and related technologies. CHAPTER 4 

presents our approach, which includes our contributions and approach in detail. This chapter 

also defines the trust in relation to a software service and introduces concepts related to 

“TruSStReMark”. As the first part of this thesis contribution, this chapter also provides a 

summary of the trust-related survey and a case study based trust model for trustworthy 

software development. The chapter also presents details about the trust contract and the role 

it plays in long term aggregation and monitoring of trust related attributes of software apps. 

This section also indicates how the proposed changes to both static and dynamic sections of 

a service specification and indicates how those changes are useful to improve the service 

selection and recommendation process. CHAPTER 5 indicates the approach to perform 

trust-based service selection and recommendation. This chapter also presents an overview 

of the prevalent selection and recommendation algorithms, highlights their shortcomings, 

and compares them with the proposed trust-based service selection and recommendation. It 

also presents the experimentation, results and analysis (of trust-based selection and 

recommendations algorithms), in terms of HR and ARHR quality matrices. CHAPTER 6 

presents the modifications which are needed to parallelize the trust-based selection and 
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recommendation algorithms. It also discusses runtime analysis, which highlights the 

improvements of the performance of the parallelized versions of both batch and stream 

algorithms. Finally, CHAPTER 7 concludes the dissertation by indicating the summary of 

the contributions and also with a glimpse of future directions. 

 

1.4 Thesis Contributions 

Based on the above Thesis Objectives, the contribution of this Thesis are listed as 

follows: 

1) Conducted a comprehensive survey and summarized different trust views and 

evidence-based models of software development and defined what trust of a 

software service (or an app) is.  

2) Proposed a scheme to represent trust attributes of a software service (or an app) 

using a trust contract in an online software marketplace environment.  

3) Proposed an evidence aggregation framework for online software services (or apps) 

which quantify trust using sentiment analysis and then, propose a technique to 

convert it to subjective logic to perform aggregation operations. 

4) Conducted experiments using the developed framework (“TruSStReMark”) to show 

the improvement in quality (in HR and ARHR matrices) by using the proposed trust-

based service selection and recommendation algorithms. When compared with 

prevent approaches, main advantage of TruSStReMark is that it can capture the 

dynamic and uncertain nature of software services or apps. This approach presents 

fine grained trust-based scores about important QoS of apps, so that they can make 

better choices.  
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5)  Improved the performance of the proposed trust-based algorithms with necessary 

parallelization and evidence streaming techniques by simulating an online software 

marketplace.  
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CHAPTER 2. RELATED WORKS 

When considering current the state of the art research, comparisons of techniques used 

to perform software service selection and service recommendation which use trust related 

attributes are studied only in a few prevalent publications. However, in general (i.e., not 

specific to software service selection and recommendation) there exist many prevalent 

approaches which model trust attributes and specify trust in specifications. In relation to 

this dissertation, the prevalent works are categorized into four sections.  

They are: 1) Related efforts of trust views and trust models in the context of 

trustworthy software development, 2) Related efforts about the trust contracts and the role 

they play in long term aggregation of trust related attributes of software apps, 3) Related 

efforts on trust-based service selection and 4) Trust-based service recommendations. These 

sections on trust-based selection and recommendation also discuss the related efforts on 

selection and recommendation algorithmic modifications, end-to-end performance 

improvements and parallelization of these algorithms. The following sub-sections 

describes the aforementioned categories of related works. Also in the context of this related 

work chapter we use both software services and apps interchangeably.  

 

2.1 Trust Views and Trust Models [13] 

The discussion of trust presented here is a condensed form of our survey paper [13]. 

Trust is an important concept that has taken on different views over time. 
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Any definition of trust is typically either subjective or biased towards the problem 

under investigation and the context of the application domain. Although this section 

contains definitions of trust views from other domains, the main goal of this section is to 

provide the related efforts about trust views and trust models in the context of software 

systems and services.  

Trust is important in many applications and many efforts have provided different 

views of trust from various domains spanning over the past three decades. Our previous 

survey (we examined 80 relevant publications from the past 30 years and then extracted 

different views and definitions of trust) [13] indicates the importance of trustworthiness 

when considering different domains such as Sociology, Law, Security, Communication, E-

commerce, and Software Systems. For example, within the domain of Sociology the trust 

if defined as -“the willingness of a party to be vulnerable to the actions of another party 

based on the expectation that the other will perform a particular action” [31]. In contrast, 

in the software systems domain and within the sub-domain of distributed software systems 

(e.g., in the context of peer-to-peer systems such as file sharing systems) the trust is defined 

as “an evaluation of the information received about its peers’ service to other peers” [32]. 

Hence, the view of trust varies according to the domain of interest and intended purpose.  

However, irrespective of the domain, in a trust relationship the two parties involved 

are named as the trustee and truster. Gambetta et al. [31] propose a basic approach for 

establishing trust relationships between two parties. Their approach is to use either an 

optimistic view or a pessimistic view. By default, the optimistic view defines all entity 

relationships are trustworthy, and conversely, the pessimistic view defines all entity 

relationships are non-trustworthy. In contrast to this basic approach, more complicated 
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approach is proposed by O’Hara et al. [33]. Their approach is to model trust relationships 

based on an algorithm called the “EigenTrust” which aggregates the local trust scores 

allocated to each individual entity and yields a global trust vector of all the involved entities. 

Each entity’s rank in the global vector is based on the recommended trust values from its 

local peers (e.g., peers with the highest number of local interactions in the past). Therefore, 

this global trust vector is now frequently updated with the regularized local trust values 

broadcasted by each entity, which contain details about other entities. However, the 

challenge of this algorithm is to guarantee convergence and break up conflicts and 

malicious activities by entities. 

One other aspect of viewing trust is to view trustworthiness based entirely on the 

quantification. Huang et al. [34] view trust as a set of quantifiable attributes expressed as 

real number and argue that any view of trust should clearly distinguish between three 

different levels: trust (i.e., the default use of the term ‘trust’), untrust (i.e., the negative 

opinions of truster on trustee based on negative evidences), and distrust (i.e., the ability not 

to make a decision about the trustee). This view of trust is more complete than viewing 

trustworthiness as a value in the range [0, 1] such that 0 represents untrust and 1 represents 

trust. However, as our survey [13] indicates, there has been a debate in research 

communities on how to distinguish untrust and distrust in a representation of [0,1]. The 

confusion arises when there is a significant difference between trust and distrust. Hence, it 

is necessary to have a proper view of trust that clearly captures the difference. Marsh et al. 

[35] propose a solution to this problem by representing the trust in the range [-1, +1] where 

-1 is untrust, 0 is distrust, and+1 is trust. However, the main concern is that when negative 
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values are used to represent trust, the propagation of trust cannot be evaluated via simple 

multiplication, which is possible when trust is viewed in the range [0, 1]. 

Also, the view of trust has tacken different perspectives when considering the time of 

its origin. In 1994, Marsh et al. [35] defined trust as “choosing of an ambiguous path by 

the truster which could be good or bad, where the occurrence of good or bad is a result of 

the action performed by an another entity”. In contrast, in 2009, Wang et al. [14] defined 

their view of trust as “Trust can be simplified to two important factors, i.e., 

recommendation and competence given from others”. Again, our previous survey [13]  

indicated that after 2001 there has been an increase in prevalent works related to trust views 

and models in the software domain. One possible reason for this increase should be the 

increased presence of various efforts that were aimed at creating generalized models of 

trust that can be applied to the development of reliable and robust software systems.  Hence, 

considering this aspect of variable view of trust over time and also considering that there 

are many definitions and views of trust, it is necessary to identify if there exists a commonly 

agreed upon view and an associated method of quantification that is suitable for software-

intensive distributed software systems, especially considering a software service within 

that complex system (which will be one of the goals of this dissertation).  

Having different trust views produces different ways of modeling trust in software 

systems. Trust models represent the description or portrayal of trustworthiness in a 

particular context. In order to reason about the trust of individual software or service and 

the composed software system, as dictated by the requirements, it is necessary to select a 

suitable and quantifiable model of trust. The trust model explicitly denotes what factors 

constitute trust of a given entity. Furthermore, the model of trust should be simple yet 
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complete enough to reason about trust of any entity. The trust model is also important when 

lot of entities are interacting with each other to form a system. 

There are many existing trust models in related works, particularly in the subdomains 

of embedded network systems and peer-to-peer networks. Jouvray et al. [36] define trust 

in terms of security and dependability and propose a trust model to enforce trust in 

embedded systems. Their main goal is to avoid communication failures which happen as 

consequences of attacks, vulnerabilities, and intrusions. The implementation of the model 

adopts model-driven engineering while proposing their framework for a trust-aware 

platform, which uses techniques to partition the set of communicating entities present in 

the embedded applications and decouples entity interactions within a small trusted 

computing group.  

Jøsang et al. [37] provide a formal trust model where trust is seen as a balance between 

belief, disbelief and uncertainty, which has been recently adopted by many other trust 

models (including the work proposed by this dissertation). For example, Theodorakopoulos 

et al. [38] and Herrmann et al. [39] embraced this trust model in their proposed frameworks 

and highlight its main strength as the easy representation of trust as a tuple, which also 

inherently includes the uncertainty associated with trust. Moreover, the other main strength 

of Jøsang’s model is the presence of well-defined logical operators of trust such as negation, 

conjunction, and consensus of trust tuples. These operators allow evaluating, aggregating, 

and comparing trust values. Improving on the model proposed by Jøsang et al. [37], 

Herrmann et al. [39] present a trust model which is applicable to the design phase of 

software services which augments the design of components with trust management aware 

adapters. Moreover, this approach addresses the production and deployment concerns of 
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the developed software systems by providing a framework for managing and monitoring 

software compliance with their defined trust policies. Aside from Herrmann et al., there 

are not many other related works that focus on trust at the deployment and production phase 

of the software service’s lifecycle. 

Alagar et al. [40] defined a trust model that primarily targets real-time systems and 

their trust model defines trust based on safety (i.e., the quality of the operational behavior 

of the system) and security (i.e., the acceptable quality of the system before, during and 

after every operation) at the system composition. For example, the evaluation of safety and 

security of a real-time system is done according to different composing patterns. Alagar et 

al. [40] also defined a set of trust-related properties at the component-level. Example of 

these trust-based properties are: event-based security (i.e., authorization of users to trigger 

a stimulus), and data-driven security (i.e., authorization of users to access data parameters 

in stimulus).   

In contrast, Yan et al. [41] model trust as a tuple of truster, trustee, policy, evidence 

and opinion. Their definitions of each item in the tuple are as follows: “truster, i.e., the 

entity who holds a belief that the trustee will provide expected services; trustee, i.e., the 

entity who has competence to offer the services as the truster expects; policy, i.e., where 

the subjectiveness of trust is expressed; context, i.e., where any information that 

characterizes the situation expressed; evidence, i.e., recommendations and quality 

attributes of the trustee; and opinion, i.e., the trust value held by truster on trustee.” 

Although this model provides trust control and management, the process of collecting 

evidences, evaluation, and the establishment and re-establishment of trust, primarily 

focuses on the deployment phase of the software lifecycle. Wang et al. [14] also define a 
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trust model to evaluate trust entirely based on quality-of-service benchmarks. Their model 

considers the uncertainty, randomness and fuzziness of the trust factors (i.e., reputation and 

competence of entities). Similarly, AbdulRahman et al. [42] propose a trust model that 

operates on runtime reputation of entities (i.e., users’ ratings, comments and feedback 

which describes entities in the model).  

Also, many of the other trust models in the peer-to-peer networking domain are based 

on peer reputation and transitivity of trust. For example, Kamvar et al. [43] defined a 

mathematical model that derives a global trust value for a peer by aggregating local trust 

values of each peer. Many other related works such as Stakhanova [44], Xiong [32], and 

Chen [45] have extended the Kamvar et al.’s [43] trust model by suggesting different 

alternative models. These models can be categorized into three categories based on their 

characteristics and behavior. Those categories are: 1) Trust views and models based on 

reputation, recommendation and transitivity algorithms, 2) Trust views and models which 

are based on graph models where peer evaluations are performed using transitivity and 

heuristics, and 3) Trust views and models based on peer relationships or past experience 

and algorithms which calculate the strength of relationships between peers to evaluate the 

trust of peers. 

Considering the different trust views and models identified and analyzed in our survey, 

this chapter only lists a few important trust views and models. For other trust models are 

not discussed in this dissertation and we encourage referring to our survey paper [13] for 

further details. As a result of this survey, we learned that regardless of the application 

domain or the phases of the software lifecycle, there is no generalized trust view or model. 

Instead there exist many different trust views and models that address different trust 
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concerns of software systems, such as recommendation, reputation, and management. Also, 

in the domain of software-intensive distributed systems, it is important to consider various 

trust-related factors, and the earlier discussion lists these factors according to the truster, 

the trustee, and other concerns. By knowing these trust concerns during the software life-

cycle of the system, the designers and the architects could identify and prevent trust-related 

issues. As the trust-related aspects are important while developing software-intensive 

systems and services, the earlier analysis also indicates that there is a need for the creation 

of a unified trust model that can be used throughout the life-cycle of such systems. Hence, 

this dissertation presents our approach (i.e., CHAPTER 4) to realizing a complete trust 

model that is applicable at each phase of an enterprise software service development 

lifecycle.  

 

2.2 Specification and Trust Contract of a Software Service 

A specification precisely describes features of a software, possibly using a formal 

notation. In the context of distributed software systems, a specification is used to expose 

or publish different attributes including details about functional and non-functional features 

to the outside world. These published specifications contain one or more contracts which 

describe the agreement between trustee and truster, possibly verified by a third party. For 

example, a software service specification publishes functional and QoS information to 

interested users of the service and is periodically verified, updated, and maintained, usually 

by third-party service registries (i.e., in this case online service marketplaces). 

Current efforts related to software specifications do not include a trust contract (i.e., 

motivation and need for a trust contract is presented in CHAPTER 4), and also do not 
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provide details about confidence or trust aspects in relation to other software attributes. 

Most of the related work in this sub-section takes a simplified view when it comes to 

expressing trustworthiness of software in their specifications. Also, a majority of the listed 

related works consider trustworthiness as another attribute in the service specification, 

hence possibly ignoring trust aspects. They use semi-formal techniques for describing a 

selected QoS attribute with a corresponding confidence value as a trust contract. 

Additionally they do not correlate the trust related attributes to the other attributes within 

the specification and adopt text based representations of software attributes which are 

expressed as name-value pairs. 

Our previous survey [13] indicated that after 2001 there has been an increase in 

efforts related to trustworthiness in the software domain. One possible reason for this 

increase is the presence of various efforts aimed at creating generalized models of trust that 

can be applied to the development of trustworthy software systems. Hence, considering 

this aspect of changing the view of trust over time and considering there are many 

definitions, views and models of trust, it is necessary to determine if there exists a 

commonly agreed upon trust related specification and an associated method of trust 

quantification that is suitable for software-intensive systems, especially considering a 

software service within that complex system. Hence, the creation of a trust specification 

for a software service that can contain multiple trust representations for different attributes, 

which is one of the goals of this dissertation. 

Since this increased attention was given to the trust-related concerns beginning in the 

early 2000s, and the Trusted Computing Group (TCG) [15] was created in 2003. The TCG 

initiative was driven and backed by key partners from industry such as AMD, HP, IBM, 
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Intel, and Microsoft. Their main objective was to produce a set of specifications that 

standardize the commonly used trust-related scenarios including risk management, asset 

management, E-commerce, security monitoring, and emergency response of a software 

entity. The first version of the specifications was released in 2008 [15]. The accepted 

version of this specification from the International Organization for Standardization is 

called the “Trusted Platform Module” and it contains four modules (i.e., Overview, Design 

Principles, Structures, and Commands). Over the years, the TCG has shifted the focus of 

their specification towards cryptographic protocols and hardware standards and now holds 

the international standard for a secure crypto-processor (i.e., a dedicated microprocessor) 

designed to secure hardware by integrating cryptographic keys into devices. 

Even before this standardizes set of specifications was proposed by the TCG, an 

initiative named the Trusted Components Initiative was formed around 1998 by Meyer et 

al. [46]. The main goal of the Trusted Components Initiative is to propose techniques based 

on a principle called “proof by program construction” [46]. This method advocates several 

best practices of software development such as object-oriented techniques, design by 

contract, software component reuse, public scrutiny (i.e., source codes of the components 

are freely available and open for contributions and criticisms), extensive testing (i.e., to 

take advantage of design by contract and reuse components), and metric efforts (i.e., to 

monitor components’ properties in a controlled fashion and ensure trust). This allows the 

software to be validated using derived proofs at the time of construction instead of waiting 

until the testing phase to perform such validations. However, this effect does not address 

the dynamic nature of trust with software updates, which is a major drawback. 
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In trusted software systems, a specification is different from the trust model because 

the specification contains a different interpretation of the trustworthiness of its published 

attributes. Few prevalent approaches consider trust-based specifications. Grandison et al. 

[47] propose a trust-oriented specification called the Simple Universal Logic-oriented 

Trust Analysis Notation (SULTAN). The SULTAN specification uses a logic-based 

notation that allows the users of the system (i.e., the truster, trustee, or trusted third-party) 

to define trust requirements, and personal recommendation statements. They also claim 

that the SULTAN specification is the first step towards a framework designed to facilitate 

analysis and management of trust relationships by using the proposed specification as the 

common interface. Also, the webservices Trust specification (WS-Trust) [48], is a part of 

the WS-* specification set that is considered the industry standard for webservices 

interoperability by the webservices consortium. WS Trust is the first attempt to standardize 

how meta-data about trust attributes is published. This specification also addresses issuing, 

renewing, validating security tokens, and providing the means to establish and assess trust 

relationships between participants using secure message exchange. Comparing these two 

methods, the SULTAN specification was never adopted since it involved many 

complexities and manual intervening with ambiguities while representing attribute 

trustworthiness.  

To compose a trusted distributed system, the trustworthiness of the functional and 

non-functional requirements of each service taking part in that system should be considered 

based on a specification and its underlying contracts. Yan et al. [41] proposed requirements 

for the trust specifications and contracts using threshold values. These values indicate the 

lower bound for user ratings that are required for an entity to be trustworthy. In contrast, 
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Alagar et al. [40] proposed requirements for the trust contracts using a set of conditions 

and properties related to safety, security, and timeliness. All these conditions and properties 

must be satisfied by the software components to ensure trustworthiness of the system.  

Any software design should involve proper documentation of the system, its sub-

systems, and their interactions with respect to a set of requirements. During the software 

life-cycle, these design documents (i.e., the design artifacts) become a part of a 

specification associated with that system. Hence, these specifications also contains the 

underlying set of facts and rules of the system that can be collected, organized, shared, 

searched, and utilized over time. For example, Uddin et al. [49]  propose a trust-aware 

development framework for building trusted systems. They introduce a Unified Modelling 

Language (UML)-based specification called UMLTrust which specifies trust scenarios in 

the design phase of the distributed system. Weth et al. [50] and Stakhanova et al. [44] have 

proposed two different approaches for realizing a trust knowledge-base: centralized and 

decentralized. In the centralized trust knowledge-base, the trust-related data are collected, 

stored, and organized at a central location. Weth et al. [50] further indicate the importance 

of keeping trust factors in a central queryable knowledge base. They propose an SQL-like 

query language, which is parameterized by trust requirements, and allows trusters to query 

the trust factors based on their needs. In contrast, Stakhanova et al. [44] and Sherwood et 

al. [51] stored evidences at different locations to evaluate trust of peers in P2P networks. 

In their approaches, meta-data about peer interactions and related trust factors are stored 

locally by each peer, and the trust evaluation algorithms collect information from 

associated peers when evaluating the trust of a peer. However, centralized solutions do not 

scale in open systems because malicious peers can take control of the central servers. In 
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distributed solutions, peers can independently co-operate in the trust evaluation process 

with their own policies, which can protect against malicious peers. 

A typical service specification now contains multiple levels of contracts. This was 

first advocated by Beugnard et al. [52]. They have proposed four distinct levels in the 

specification of a service contract, namely syntax, semantics, synchronization, and QoS.  

In CHAPTER 4[52], Figure 4.6 indicates a modified version of their proposal with Level 

0 indicating the type and other inherent attributes before their four levels. These levels may 

be negotiated at varying degree from non-negotiable at the type and syntax levels to highly-

negotiable at the QoS level. Multi-level specifications do offer more details about the 

services than the basic contracts. However, they still do not include a formal quantification 

of the trust values. The dynamic nature of software (i.e., frequent updates) and fuzzy nature 

of the underlying environment makes software features and qualities change over time. As 

a result, the trust of the software also fluctuates over time. For example, this dynamic and 

fuzzy nature of software is visible in emerging software marketplaces (e.g., Android-based 

mobile applications that are available from the Google Play Store [5]). Over time, the 

software in such marketplaces is updated and frequently becomes pushed to the clients.  

Hence, it is hard to determine whether a service actually delivers what it promises by 

merely inspecting its contract. One possible solution to overcome this issue is to define a 

separate trust contract for each service with appropriate aggregated information about 

various evidences related to its multiple levels, which is one of the goals of this dissertation.  
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2.3 Trust-based Service Selection  

Reusing software entities is a well-established practice in the software development 

process. Hence, most software systems re-use third-party software applications and 

services. If a new software entity with similar features to an existing entity is found and 

also the new entity provides additional desired features (e.g., higher QoS), then the new 

entity found could replace the existing one. However, due to frequent updates, the software 

system should adapt to the dynamic nature of entities or shared libraries constantly being 

updated, possibly at run-time. Service selection is the process which finds these new 

entities to be updated. Service selection involves comparing suitable candidate services to 

estimate possible similarities and differences between them. Hence, selection is the action 

of choosing an entity as being the best or most suitable for a certain need. Trust is an 

important factor in this process and the trustworthiness of entities needs to be evaluated. 

Hence, the service selection process can also be improved by identifying the most 

trustworthy software entity with a suitable technique for comparing trust-related factors 

among many other choices that provide a similar functionality and behavior. Few prevalent 

works study the impact of trust on service selection on automatic service composition and 

system generation.  

The work proposed by Liu et al. [53] tries to capture and use valuable personal 

evaluations of services. It facilitates the expansion of a service-oriented network into a 

trust-based, self-organizing virtual collaboration environment. This framework is based on 

personalized service selections which couples with social network analysis targeting 

service attributes. Also, this approach views a service-oriented network (i.e., a Grid 

network or the World Wide Web) as an ecosystem and considers the trust evaluation and 
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propagation as the fundamental driving forces for service selection and then use them for 

composition. This approach expands to current e-service selections from service registries 

to make better decisions. However, they note that, it is not possible to capture all possible 

evaluations and use them without employing intelligent planning for composition, which 

fails to scale in a large open environment such as the World Wide Web. Hence, they 

consider trust evaluation and propagation as the fundamental driving forces for service 

selection and composition, and the proposed framework includes self-organizing 

capabilities based on trustworthiness in their simulated collaboration environments.  

In contrast, the work proposed by Limam et al. [54] describes a rating based 

framework for reputation-aware software service selection. Here, the main use of trust is 

to compare trust of entities from a set of candidate entities that perform the same or similar 

functions and select the one most suitable for a particular need. This can be achieved if the 

trust values of these entities are comparable with each other, hence their trust representation 

must be a quantified value. Their service selection algorithm is based on an automated 

rating model and market science which uses service quality and cost to overcome feedback 

subjectivity issues. The proposed rating and selection algorithms are validated through 

simulations, demonstrating that the system can effectively capture service behavior and 

select the best possible choices. Their work matches the work proposed by this dissertation, 

however their solution is static and targets specific needs. This could not be used as a trust 

aggregation and selection method in general and is more suitable for the dynamic nature of 

a service marketplace. 

The work proposed by Hang et al. [55] develops a framework for service selection by 

promoting trust as the matching scheme that is based on probability distributions and graph 
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theory. The trust aspects of service descriptions are based on the beta probability 

distribution. Their selection scheme includes two approaches for matching trust attributes: 

1) Bayesian networks (which captures the dependency of providing required service quality 

between other services using acyclic graphs techniques), and 2) beta-mixture mode (which 

models events that are constrained within pre-defined ranges). When their approach is 

compared to the evidence-based approach proposed by this dissertation, it is clear that 

subjective logic based operations do not need any prior knowledge, rather they could 

aggregate evidences dynamically. Hence, the main drawback of their approach is that some 

level of prior knowledge is needed about the evidences plus subjectivity and uncertainty of 

trust are not considered as inherent features.  

Similarly, the framework proposed by Yan et al. [56] indicates an approach for 

selecting software services based on a user-centric perspective, especially from the service 

consumers’ viewpoint. Service consumers’ rate software services, and these ratings are 

incorporated into a software service’s reputation. This method classifies reputation into 

two different categories: 1) local reputation, which is the entity's own assessment based on 

past history of direct interaction with the particular entity, and 2) global reputation, which 

is the aggregation of all available assessments by other entities that have had interactions 

with the particular entity. The two kinds of reputation are then used to generate a reputation 

metric model that is used to assess the level of trust an entity puts into another entity. 

Although there are different variations proposed with service reputation, the drawback of 

this approach is that the only trust related operation used in service selection was reputation. 

Plus, their approach considers only the static nature of evidences, including ratings and 

reviews and does not incorporate uncertainty as a part of their approaches. 
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Li et al. [57] propose a framework which employs a trust-based service selection in 

service oriented environments. They claim that sometimes a webservice’s reliability is 

unknown to the service users in current service-oriented environments. They also note that 

reputation-based systems are popular now because they are able to produce a global score 

of quality of a service provider to requesters. However, users cannot solely rely on such 

global information to choose the most qualified services. They tackle this problem by 

presenting a trust-based architecture with a computational trust model for quantifying and 

comparing the trustworthiness of webservices. In their framework, the first step is to 

construct an entity network, which uses the direct trust relations between entities based on 

the reputation and rating similarity. The next step in their approach is to execute an 

algorithm for propagating trust in this network, and to produce personalized trust 

information for service requesters.  Experiments are carried out after their implementation 

of the trust model to simulate various malicious behaviors in not only dense but also sparse 

service networks. The goal of their experiments was to verify the attack-resistance and 

robustness of the proposed approach and the experimental results demonstrate the 

feasibility and benefits of their approach. The drawback of this approach is to assume 

reputations of services are static, however, in reality this is not true when services get 

updates dynamically. The framework proposed by this dissertation does not have that 

assumptions and the proposed trust model consider dynamic nature of the trust of services. 

Su et al. [58] present their work on trust-based group service selection in web-based 

service-oriented environments. They state that multi-agent (i.e., a collection of services 

which forms a service group) technologies are adopted for the development of many web-

based systems such as e-markets, grid computing, and e-government web portals. In this 
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dynamic and open environment with autonomous agents, their work addresses the 

challenge of how to select the most suitable service groups according to a particular service 

request. Their selection framework includes a trust model named as the GTrust model. This 

model is mainly for service groups and the selection mechanism focuses on selecting a 

service group in general. The GTrust model’s trust evaluation is based on the functionality 

of the group and the dependency relationships among individual services in the group. The 

selection process uses the ratings of individual services on the attributes of the service 

request and a similarity measurement of the extent to which reference reports can reflect 

the service request in terms of the priority distribution of attributes. When compared to the 

prevalent approaches, their results and analysis indicate an improvement in performance 

of the GTrust model on service group selection in service-oriented environments. 

In summary, service selection is an important part of the development process for a 

trusted distributed system where software reuse is becoming the norm. Although, only few 

publications exist which evaluate trust while performing software service selection, they 

only consider static evidences. Hence, they fail to capture the important dynamic nature of 

trust with services being updated frequently and environmental fluctuations. Without the 

long term monitoring and aggregating trust of software services as proposed by this 

dissertation, it is hard to achieve the benefits and capture the subjective nature of trust. In 

addition, these models are not capable of providing additional information at the time of 

service selection with different levels of abstraction (i.e., at overall service level, at the 

level of a collection of functional attributes and at the single attribute level). In contrast, 

the approach proposed by this dissertation considers the subjective and dynamic nature of 
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trust, provides long-term monitoring and aggregation of trust attributes and provides 

information at different levels to effectively perform trustworthy service selection.  

 

2.4 Trust-based Service Recommendation  

The discussion presented here is a condensed version of our previous paper [59]. When 

considering the domain of recommendations, there are many attempts at creating 

recommendation systems for physical products, but recommendations involving software 

services are studied in very few publications. Also, there are some related efforts on trust-

based searching, ranking and recommending specifically for software services. However, 

there are many efforts focus on creating different techniques to improve collaborative and 

content based filtering algorithms.  Hence, the following section only describes the related 

trust-based service recommendation approaches while comparing them to the approach 

proposed by this dissertation. 

 The work proposed by Das et al. [59] experiments with selecting online news based 

on an offline clustering method with reservoir sampling. Their content-based approach uses 

clustering and does not consider the relative importance of each service. However, it does 

consider the trustworthiness of the service by calculating from their QoS values. The work 

proposed by Zhou et al. [60], a real time search and recommender system targeting 

microblogs which uses only user tags (i.e., hashtags) to compute the similarity. However 

in the context of software, it is not sufficient to consider the service type and description 

tags only. Zhang et al. [61] propose a search and ranking model for scientific publication 

networks. Their trust model is called Knowledge-Social-Trust (KST) and it draws upon 

various scientific publication repositories (e.g., DBLP) and social networks (e.g., Twitter). 
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The Knowledge-Social-Trust is a graph-based network model which calculates the relative 

importance of citations from various publication repositories. Their notion of services 

comes from the scientific domain while ours is targeted for service marketplaces. In a 

service marketplace, there is no notion of citing or referring one service by another. 

However, their trust model can be adopted to our context based on their interest in the QoS 

in a service marketplace.   

Similarly, an approach is presented by Tang et al. [62] where both the user-service 

relation and the user-user social relation are explored. Our approach of reviewer-reviewer 

correlation is similar to their approach, however, their social trust is based on social 

networks and ours is based on sentiments of their written experiences about services. The 

work proposed by Lin et al. [63] experiments a social-trust-based recommendation 

mechanism for binding and accessing information from webservices and then using it to 

recommend trustworthy webservices. It uses legally binding information of webservices 

based on the social trust of the enterprises to build a trust network. The difference between 

our approach and theirs is that we consider individual service features and attributes, while 

their approach considers confidence about a webservice as a whole. Therefore, our 

approach is at a finer granularity than theirs and thus provides a more comprehensive 

technique. 

Gupta et al. [64] explain Twitter’s recommendation technique, which employs an 

algorithm and uses tweet tags which are represented as a set of adjacency lists in a social 

graph. The search and recommendation then becomes a lookup and intersection analysis 

of these lists. Our approach of service-reviewer correlation is similar to their tweet-tag, 

however, their trust is based on social network analysis (i.e., followers) and ours is based 
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on sentiments of written experiences about services (i.e., from service users). Also, the 

work proposed by Zhang et al. [65] discusses a temporal and QoS-aware webservice 

recommendation using non-negative tensor factorization. Their goal is to address the issues 

related to QoS-aware webservice recommendations with the rapid growth of webservice in 

the past decade.  Similar to our approach, they mention that QoS information collection 

requires much time and effort and even impractical, hence these service-QoS values are 

usually ignored or missing. Compared to the prevalent approaches used to predict the 

missing QoS value through traditional collaborative filtering methods based on user-

service static model, they highlight that the QoS value is highly volatile and often related 

to the invocation. Hence, their work considers the dynamic contextual information to come 

up with a temporal QoS-aware webservice Recommendation Framework that is capable of 

predicting the missing QoS values under various temporal contexts. They formalize this 

approach as a generalized tensor factorization model and propose a Non-negative Tensor 

Factorization (NTF) algorithm which is able to deal with the triadic relations of a user-

service-time model. Their experiments and results are conducted based on a real-world 

webservice QoS dataset collected from Planet-Lab (i.e., comprised of service invocation 

response-time and throughput value from 343 users on 5817 webservices at 32 time 

periods). Their experimental analysis shows that this approach achieves better prediction 

accuracy than other prevalent approaches. However, their dataset was very small and does 

not reflect real world scenarios from online marketplaces such as Google Android Apps 

Marketplace [5].  

Webservices are heavily used to design new approaches, hence better recommendation 

of webservices recommendation has become critical [66]. Most recommendation 
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approaches use UDDI registries and set of keywords hence these techniques have 

drawbacks. For example, heavy dependence on user inputs such as frequent activities and 

submission of detailed queries. Hence, the work proposed by Yao et al. [66] recommends 

webservices by combining collaborative filtering with content-based features. They 

propose a novel approach that dynamically recommends webservices that fit users’ 

interests. This  approach  is  a hybrid system in  the  sense that  it  combines collaborative  

filtering  and  content-based  recommendation.  In particular this model uses a three-way 

approach, such that it simultaneously considers both rating the data, the content of 

webservices and unobservable user preferences (which are statistically estimated and are 

represented by introducing a set of latent variables). To verify the proposed approach, they 

have conducted experiments using around 4000 real-world webservices. Results show that 

their framework performs better, mainly on recommendation quality and performance, 

when compared to prevalent conventional approaches such as collaborative filtering and 

content-based filtering recommendation. This approach is similar to our approach however 

this approach does not contain how these algorithms can be parallelized or could perform 

efficiently in a real marketplace. The approach proposed by this dissertation include details 

about parallelizing the hybrid approach with results and their analysis.   

Similarly, Chen et al. [67] propose a method of webservice recommendation by 

exploiting contextual details such as location and QoS. Their focus is on integrated 

software components, which support interoperable node-to-node interactions over a large 

network. They also indicate these kinds of webservices have been widely used in recent 

years for building service-oriented applications in both industry and academia. Their views 

is that the number of publicly available services is steadily increasing in the Internet, which 
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is similar to our view too. The challenge for the user is the complexity to select a suitable 

webservice by searching a large set of candidates. To address these issues, Chen et al. [67] 

propose a collaborative filtering based webservice recommender system to select services 

with improved performance. Our recommender system also employs the location 

information and QoS values to cluster users and services, and makes personalized service 

recommendation for users based on the clustering results. Compared with existing service 

recommendation methods, their approach achieves improvement on the recommendation 

accuracy, however they fail to address the quality of the recommendations. Their 

comprehensive experiments involve more than 1.5 million QoS records of real world 

webservices to demonstrate the effectiveness of their proposed approach. When compared 

to the approach proposed by this dissertation, negligence of the quality of recommendations 

over accuracy is the main drawback of their approach. 

In summary, service recommendation is an important part inside the ecosystem of 

online software marketplaces. Similar to the number of trust-based selection approaches, 

few recent publications exist on trust-based recommendations. They either treat trust as yet 

another attribute or they do not indicate trust relations to other existing attributes and 

update them dynamically as other attributes get updated. Also, these approaches only 

consider the static nature of evidences and contextual information. It is hard to capture the 

subjective nature of trust, hence, these prevalent approaches are not capable of capturing 

additional levels of information at the time of service recommendations. Since they fail to 

capture the important dynamic nature of trust, the approach proposed by this dissertation 

uses long-term monitoring and aggregating of trust of software services. Our approach also 

considers the subjective and dynamic nature of trust, aggregation of trust attributes, and 
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provides information at different levels to improve the quality and effectively perform 

trustworthy service recommendation.  
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CHAPTER 3. BACKGROUND RELATED TO OUR APPROACH  

The following two sections present a summary of our past work and background 

concepts. The prevalent work section contains the related work of my M.S. Thesis and the 

background section contains a summary of related concepts which to this dissertation. Also 

in the context of this this chapter we use terms services and apps interchangeably. 

 

3.1 Past Work 

The discussion presented here is a condensed version of my MS Thesis [69]. 

Demanding applications have forced the transition of the computing paradigm from a 

centralized approach to a distributed approach and this shift has led to the concept of 

Distributed Computing Systems (DCS). Traditional way of software development lacks the 

ability to address the challenges in software realization of large scale DCS. Out of many 

methods proposed to develop DCS, one main approach is the Component Based Software 

Development (CBSD). The UniFrame approach [68], an approach developed at IUPUI, 

follows the concepts of CBSD and addresses the design and integration complexity of DCS. 

 

3.1.1 URDS and Multi-level Contracts 

Discovering appropriate services from a set of available candidate services set is an 

essential step in developing distributed systems that are composed of individual services.
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Various techniques, ranging from simplistic attribute comparisons to more complex multi-

level matching, can be used for matching a query against a set of service specifications. 

The UniFrame approach [68] provides a comprehensive framework which enables the 

discovery, interoperability, and collaboration of components via generative software 

techniques. It uses existing and emerging distributed component models to form a common 

meta-model. This framework enables the creation of high-confidence DCS using existing 

and newly developed distributed heterogeneous components. One essential part of 

UniFrame is the UniFrame Resource Discovery Service (URDS) [69]. The URDS is a 

hierarchical discovery system that uses the principles of multi-level specifications and 

associated matching.  

 

3.1.2 Service Discovery and proURDS 

Due to the limitations of the simple attribute-based representation of contracts and 

basic textual matching, the URDS uses the concepts of Multi-level contract representation 

and Multi-level Matching (MLM) [73]. The URDS contract provides information at many 

levels including: the General, Syntactic, Semantic, Synchronization, and QoS. Matching 

of component contracts is performed according to the appropriate matching operations 

proposed for each of these levels. This narrows down the search space according to the 

individual requirements at a corresponding level. Hence, based on each operator's 

capability, related components have a better chance of being included in the result list. As 

described in) [69], [70], and [73], the proURDS was developed as a distributed setup by 

enhancing the URDS architecture which was deployed over the network with real 

component contracts.  
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The proURDS was experimented and the results were presented in [73] which 

indicated an improved architecture from the previous version of URDS. Two new modules 

(namely, the Knowledge Base (KB) module and the Service Management and Monitoring 

(SMM) module) of proURDS enhance the URDS architecture by providing necessary 

domain knowledge and control, management and monitoring capabilities. Also the case 

study has presented empirical validation of the proURDS using environmental science 

services was performed in [72] and [73]. It also compared the performance of the proURDS 

with jUDDI [71], which is one of the popular public discovery service implementation. 

The results described in [73] indicate that the proURDS returns relevant services (i.e., 

services with better quality) as a result of the multi-level matching semantics at the cost of 

increased response time. The proURDS referred to a public dataset called QWS dataset 

[74]. This dataset includes actual information of software components (i.e., webservices), 

which were harvested from the Internet. The quality of the services returned by the 

proURDS is measured in terms of precision and recall. Although the average response time 

of the proURDS is high, this was expected due to the extra work performed by the multi-

level matching. This dissertation builds upon the experiences obtained from the proURDS 

based work to investigate service specification, selection and recommendations in the 

context of trustworthiness.  

Our research group have also analyzed how learning techniques could help service 

discovery and selection. In [75] we discuss the effects of using learning profiles in the 

search algorithms of the URDS. The experiences gained from improving this solution for 

efficiently discovering services using learning techniques has provided additional 

background for this dissertation.  



www.manaraa.com

44 
 

Our research group have also worked on another service discovery technique [76] 

which combines the principles of multilevel matching with the reinforcement learning 

techniques. This discovery process selects services dynamically using criteria based on 

performance which considers the reinforcement feedback. The entities in this system are 

not only distributed in nature but also they randomly join and leave the system. Hence, 

learning of preferred acquaintances are encouraged, which intern helps to improve the 

capabilities of matching. Main goal of this work was to eliminating a large amount of 

redundant computation. Experimental results are presented using an information 

classification system and they show performance improvement and reduction in 

computational cost. The experience gained from improving the performance and the 

computation cost of this solution has also provided the necessary background for this 

dissertation. 

 

3.2 Related Background Concepts 

The following sub-sections describe the main concepts that are related to this 

dissertation work: These concepts are related to 1) Theory of Evidence – which is used as 

the basis by our approach in long term monitoring and aggregation of evidences related to 

the trustworthiness of services, 2) Subjective Logic – which provides a mathematical logic 

to capture quantified values of evidences with a rich set of operators to reason about the 

trustworthiness of services, 3) Sentiment Analysis – which is used to capture expressed 

sentiments about evidences by users of services inside the proposed framework, 4) 

Content-based filtering – which is used as the basis for service selection algorithms and 

our approach enhances it by incorporating trust-based concepts, and 5) Collaborative 
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Filtering – which is used as the basis for service selection and recommendation algorithms 

and our approach improves it by incorporating trust-based concepts. 

  

3.2.1 Theory of Evidence [22]  and Subjective Logic [23] [77] 

(1) The Theory of Evidence (ToE) [22] is a framework for quantifying evidences 

with uncertainty [77]. It enables to represent and aggregate difference evidence and 

quantify these set of evidence in to tuples of belief, disbelief and uncertainty. However, 

following this theory can result belief values which contradict with those values arrived at 

using the prevalent probability theories. This theory is an improvement from the original 

version of the theory proposed by Dempster and Shafer [77]. Many authors also have 

proposed different rules for combining set of evidence, and also extending this work to 

handling conflicts in collection of evidence. This theory also started other fields on its own 

such as, the Theory of Hints [78]. Today, one of the main applications of Theory of Belief 

is provide a reliable mechanism to fuse different set of evidence from various sensors. 

However, the main part of this work was initially applied to the legal domain to predict the 

outcome of court hearings and which as a result the theory was called the Dempster-Shafer 

theory [77]. 

Also, the ToE indicates that the degree of belief in a given proposition depends upon 

the number of evidences related to that proposition [22]. The theory provides a set of rules 

which are used to combine evidences about two related proposition in a particular system. 

The work proposed by this dissertation, the TruSStReMark framework (i.e., including the 

model and algorithms presented in CHAPTER 4) proposed by this dissertation base the 

related work with evidences related to software services on the basic theory and approach 
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explained above. This dissertation uses the theory of evidence concepts to quantify and 

aggregate trust and also use them to improve selection and recommendation of services in 

an online marketplace (i.e., TruSStReMark framework presented in CHAPTER 4).  

(2) The Subjective Logic (SL) [23] is based on probabilistic logic which takes belief 

and uncertainty while its calculations. It also defines a set of logical operations on 

evidences. In a subjective logic propositions, the arguments are a set of subjective opinions 

about that particular proposition. When a collection of propositions are present, the 

subjective logic provides an algebra to combine different opinions which are based on the 

belief functions. 

 
Figure 3.1 Subjective Logic tuple notation of Belief, Disbelief and Uncertainty [23] 

 

Capturing the uncertainty of evidences is the main strength of the SL and thus it 

improves the well-established Boolean logic to include uncertainty. Due to the human 

nature of suspicion, there is no absolute certainty whether a proposition about the real world 
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is true or false. Whenever the truth of a proposition is expressed, it is always done by an 

individual, and it can never be considered to represent a certain belief on that proposition. 

Figure 3.1 presents sample representations of both graphical and numerical subjective logic 

tuples which are expressed as Belief, Disbelief and Uncertainty values.  

In Subjective Logic the opinions are represented on a triangle as shown in Figure 3.1. 

A point inside the triangle represents a (B,D,U) tuple. Within this triangle, a very strong 

positive opinion is represented by a point in the bottom right section. Figure 3.1 also 

indicates three sample propositions X, Y and Z which are visualized on the triangle with 

their corresponding numerical values and verbal descriptions of each opinions (i.e., very 

likely, chances are even and very unlikely). There are three special points in that opinion 

space. They are i) the full Belief B = (1,0,0), ii) the full Disbelief D = (0,1,0), and iii) full 

Uncertainty U = (0,0,1).  

Apart from the tuple representation, the main concept in Subjective Logic is its 

operators. Most operators of the SL are based on the corresponding binary logic operators 

which are then generalized to include uncertainty as an inherent feature. The main 

operators in SL are Union (improved from Addition operator), Difference (improved from 

Subtraction operator), Conjunction (improved from AND operator), Disjunction (improved 

from OR operator), Consensus and Negation (improved from NOT operator). The main 

advantage of Subjective Logic operators is that if needed they can also preserve related 

attributes (i.e., the subjects and the contexts) intact while doing the computations.  

The implementation of the operators depends on the application. For example, in 

sensor fusion, it is assumed that two separate items are fused into one using the consensus 

operator which is preferred over Union and Conjunction. The consensus operation merge 
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two opinions into one opinion by evidence aggregation. In the evidence space, the 

consensus rule can only be applied if the evidence underlying x and y is independent. Hence, 

the SL allows efficient computation of mathematically complex models and applications. 

For example, this approach is suitable when the uncertainty is needed to be carried through 

and it enables to distinguish between certain and uncertain conclusions. The 

TruSStReMark framework proposed by this dissertation base the algorithms which model 

and aggregate evidences which are related to software apps on the subjective logic based 

operators. More details about the TruSStReMark framework is presented in CHAPTER 4. 

 

3.2.2 Sentiment Analysis Concepts [25] [83] 

Sentiment Analysis (SA [25] a.k.a. opinion mining) refers to the use of Natural 

Language Processing (NLP) techniques to analyze textual content and use computational 

linguistics criteria to identify and subjectivity (s) and polarity (p) information. It aims to 

quantify the tone of a writer. The sentiment of a textual sentence is presented using a 

numerical pair of (p,s). The values of p and s each represent the polarization (i.e., the 

confidence about an identified named entity) with a value between -1 and +1 and the 

subjectivity (i.e., the weight of the expressed polarization) with a value between 0 and +1.  

The polarity of a given sentence of a document highlights the opinion which would be 

either positive, negative, or neutral. In contrast, subjectivity is difficult to calculate. The 

subjectivity of words and phrases usually depends on their context and an objective of the 

document. For example, calculating subjectivity becomes more complex when the 

document contain subjective sentences, like a document quoting people's opinions. One 

way to avoid this complexity is to identify objective sentences from a document before 
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classifying its polarity. One other way to aggregate sentiment from text is to scale the 

values where the words are associated number on a range from -100 to +100.  

Main problem of sentiment analysis is the detection of stop-words. The accuracy of a 

sentiment analysis system is usually measured by precision and recall matrices. Therefore, 

some sentiment analysis tasks can return a scalar rather than a binary value. Although there 

are recent advances of NLP techniques, the sentiment analysis is still considered as a 

challenging problem. One popular application of SA is to calculate sentiments based on 

different features of entities. The automatic identification of features can be performed 

either manually by using a domain expert or automatically using a topic modeling 

techniques such as TF-IDF. Basic sentiment classifications to go beyond 

polarity/subjectivity tuples to quantify emotional states such as sadness and happiness.  

More advanced techniques are capable of finding the owner (i.e., the entity which the 

effect of the sentiment is felt) of a sentiment [77]. Moreover, specific classifiers such as 

the Max Entropy and the Support Vector Models [83], can be used to improve the overall 

accuracy of the sentiment classifications. Other hybrid approaches [83], use ontologies and 

knowledge representations. Also, SA is widely applied to reviews and social media for 

many applications such as advertising, marketing and customer service. The 

TruSStReMark framework proposed by this dissertation uses sentiment-based techniques 

to quantify evidence available in online marketplaces. It identifies a set of named entities 

for users from storing their queries (e.g., which QoS features are important to them). These 

named entities for apps can be calculated from the keywords, their description, and from 

user reviews. Using TextBlob library [78] (i.e., a popular NLP library which could 

calculate sentiments efficiently), the framework analyzes textual reviews from users to 
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calculate the sentiment expressed about QoS properties of a software apps. More details 

about the TruSStReMark framework is presented in CHAPTER 4. 

 

3.2.3 Content-based and Collaborative Filtering [16] [17] 

The concepts of selection and recommendation have become popular in recent years, 

and are heavily used in domains such as movies, news, and products in general. These 

techniques produce a list of ordered items in either from collaborative filtering [16] or 

content-based filtering [17] or hybrid of these two techniques [83].  

(1) Collaborative Filtering (CLF) [16]. The discussion presented here is a condensed 

and near-verbatim form of information in Wikipedia [16]. The CLF approaches build a 

model from a user's past behavior (i.e., items previously selected or purchased with 

optional numerical ratings given to those items). This technique also considers similar 

decisions made by other users. This model then uses that to predict items the user would 

be interested to use. Hence, the collaborative filtering technique is based on the assumption 

that people who agreed in the past will agree in the future, and that they will like similar 

kinds of items as they liked in the past. These methods typically collect and analyze large 

amount of information especially on users’ behaviors, their activities or preferences. From 

these collected information, then CLF predicts what these users will like in future by 

analyzing their similarity with other users.  

To calculate the similarity, CLF uses many algorithms to measure user (or item) 

similarity. Popular similarity algorithms are K-nearest neighbor, Cosine Correlation and 

Pearson correlation based similarity algorithms. One of the popular example of 

collaborative filtering is item-to-item collaborative filtering which is an algorithm heavily 
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used by industry leaders such as Amazon, Facebook, Twitter and LinkedIn [84]. The main 

use of this techniques is to select and recommend new entities, groups, and other social 

connections by examining the network of connections between entities. Despite many 

advantages, this technique often suffers from three main problems. They are cold start, 

scalability, and sparsity. The problem of cold start happens when the systems require a 

large amount of existing data on a user in order to make accurate predictions. Also, the 

algorithm need to work on millions of items, hence, the scalability of the environments is 

an issue to produce real-time results. If we consider the number of items exists, this number 

is extremely large but most users can only rate a subset of the items. Hence, sparsity is also 

an issue. Considering the above mentioned drawbacks of both content-based filtering and 

collaborative filtering, these approaches are often combined to produce hybrid techniques.  

(2) Content-based Filtering (CBF) [17]. The discussion presented here is a condensed 

and near-verbatim form of information in Wikipedia [17]. The CBF techniques operate on 

a series of label attributes of items. Then CBF use these information to select and 

recommend additional items with similar properties. All content-based filtering approaches 

uses item descriptions with a profile of the user’s preference. These descriptions are then 

reduced to set of keywords which are then used to describe these items. Also, the user 

profile descriptions are reduced to a set of keyword, which is represented as a vector, which 

represents the type of items that each user prefers.  

To extract the features of the items in a particular system, certain algorithms are 

applied and one widely used algorithm is the tf–idf [84] (i.e., term frequency and inverse 

document frequency). In tf-idf, all the features are represented using a fast accessible and 

storage efficient technique such as vector space representation. For example, creating user 
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profile tf-idf model of the user's preference. The CBF algorithm creates a content-based 

profile of users based on a weighted vector of item features. These weights represent the 

importance of each feature to the user. These values of weights can be adhered from 

individually rated item vectors using a variety of techniques. For example, in order to 

estimate the probability that the user is going to like or use the item, a naïve approach could 

use the average values of the rated item vector while other complex approach could use 

machine learning techniques such as clustering or artificial neural networks. Main issue 

with content-based filtering is how accurately that the algorithm was able to learn user 

preferences from users' actions. Direct feedback from the users are highly valuable for 

success of this techniques. For example users clicking like (or thumbs up) button is to 

assign higher weights. Novelty of the recommended items is also very valuable. If the CBF 

is only recommending same content that the user is using now or used in past, then the 

those recommendations are not valuable for the users.   

(3) Hybrid Approach (HA) [84]. The discussion presented here is a condensed and 

near-verbatim form of information in Wikipedia [84]. The HA combines collaborative 

filtering and content-based filtering to build techniques which are more accurate and 

effective. Naive way to develop a hybrid approach is to perform CBF and CLF predictions 

in parallel and then merge them. When compared with the basic collaborative and content-

based methods, the hybrid techniques usually improve the results in both quality and 

quantity. The advantage of hybrid method is that it could overcome the common problems 

in CBF and CLF systems such as cold start and sparsity.  

Each type of selection and recommendation technique (i.e., CBF, CLF or HA) has its 

own strengths and weaknesses. For example, some techniques would requires a large 
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amount of information on a user in order to make accurate predictions and others do not 

need such large collection of data. The TruSStReMark framework proposed by this 

dissertation uses a hybrid approach to simulate trust-based selection and recommendation 

in online marketplaces. The framework improves the basic content-based and collaborative 

filtering techniques to include trust-based augmentations based on expressed QoS 

properties of a software apps. More details about the TruSStReMark framework is 

presented in CHAPTER 4. 

 

3.2.4 Big Data Analytics Concepts [79] 

(1) Big Data [79]. The discussion presented here is a condensed and near-verbatim 

form of information in Wikipedia [79]. The Big Data is the term for dealing with large data 

sets that are complex than traditional datasets. Therefore, the traditional data processing 

techniques are insufficient to work with them. Analysis of these large data sets can often g 

find new information to understand trends and insights. Since data storage is cheap, large 

amounts of data is generated each day. Once example where large volumes of data is 

generated is online software app marketplaces, for example, Android and Amazon 

marketplace where software-based services and apps are hosted. Whenever a new platform 

is released (e.g., updates done to the hardware and software of the platform such as android 

platform enabling its new features to use the newest sensor of a device), all existing services 

and apps tend to release a new version targeting this new platform update. Hence, it 

generates lot of artifacts and data, such as community reviews about each versions of these 

apps presenting a big data analysis challenge.  
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The definition of Big Data is being updated each day, one accepted definition is from 

Gartner, that is "Big data is high volume, high velocity, or high variety (i.e., also knows 

and 3Vs of Big Data) of information which require new forms of processing to enable 

enhanced decision making" [79]. The definition of 3Vs are: volume (i.e., amount of data), 

velocity (i.e., in and out speed of data), and variety (i.e., heterogeneity of data types). 

Additionally, a new V for Veracity (i.e., quality and uncertainty of data) which is added by 

some organizations to describe it and making it 4Vs to describe the challenges of Big Data. 

The Lambda Architecture (LA) [80] is coupled with the growth of big data and real-

time data analytics. This architecture is heavily used in Business Intelligence (BI) use-cases. 

The usage of LA is to perform data-processing, which is designed to handle very large 

quantities of data by taking advantage of both batch- and stream-processing methods. The 

main goal of this architecture is to balance latency, throughput, and fault-tolerance by using 

batch processing to provide comprehensive and accurate views of batch data, while 

simultaneously using real-time stream processing to provide views of online data. The 

TruSStReMark framework proposed by this dissertation gathers and analyzes external user 

reviews generated by online marketplaces which is now considered as a big data challenge. 

More details about the TruSStReMark framework is presented in CHAPTER 4. 

(2) MapReduce, HDFS and Hadoop Ecosystem [28]. The MapReduce is a 

distributed programming model together with an associated implementation for processing 

large data sets using parallel, distributed algorithms on large computing clusters. A 

MapReduce program consists of a Map Task (i.t., which performs filtering and sorting of 

data) and a Reduce Task (i.e., which performs a summarizing operations). The MapReduce 

software framework uses the provided hardware infrastructure to orchestrates parallel tasks 
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on these distributed computing nodes, while managing all communications and also 

providing means for, scalability and fault tolerance. Also, optimizing the communication 

load is critical for efficient MapReduce-based algorithms.   

The discussion presented here is a condensed and near-verbatim form of information 

in Wikipedia [27]. Hadoop framework [26] is an open-source implementation of 

MapReduce echo-system and it has now evolved into a software framework for distributed 

storage and distributed processing of very large data sets on common computer clusters 

(i.e., built using commodity and cheap hardware). Main strength of this framework is that 

all component in this are designed with the assumption of frequent hardware failures. The 

storage part of this framework is called the Hadoop Distributed File System (HDFS) [27], 

which splits files into large blocks and distributes them across nodes in a cluster. The main 

concept is to minimize the data transfer and send the processing to the data by distributing 

executable code to the data nodes (i.e., sending the programs to the locations of the data).  

The Hadoop framework is mainly written in the Java programming language with 

minor native code in C++ and some utilities written using shell scripts. To orchestrate and 

coordinate this framework, a resource manager is an essential component to this framework. 

Hadoop YARN (i.e., Yet Another Resource Negotiator) is accountable for managing 

computing resources in hardware clusters and scheduling of computing tasks. This 

framework is now evolved to a rich collection of additional packages, which are installed 

alongside Hadoop Framework (such as Apache Pig, Apache Hive, Apache HBase, Apache 

Phoenix, Apache Spark, Apache ZooKeeper, Apache Flume, Apache Sqoop, Apache 

Oozie, Apache Storm), which yield into a complete ecosystem to handle challenges 

associated with executing big data applications. The TruSStReMark framework proposed 
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by this dissertation uses HDFS to store its data and uses Hadoop ecosystem to execute the 

parallelized versions of its trust-based selection and recommendation algorithms (i.e., 

presented in, CHAPTER 5, and CHAPTER 6). 

(3) Data Streaming Processing and Spark Ecosystem [29] [79]. The discussion 

presented here is a condensed and near-verbatim form of information in Wikipedia [79]. 

Stream processing [79] is a computing paradigm, which allows applications to use limited 

form of parallel processing and take advantage of them by streaming the data in to them. 

Usually these applications tend to use multiple computational units (e.g., Graphics 

Processing Units (GPU) or Fields Programmable Gate Arrays (FPGA)) without explicitly 

managing allocation, synchronization, or communication between them. The main goal of 

the stream processing unit is to apply a set of transformation to each item in the input.  

Apache Spark [29] is an open-source framework for stream processing using large 

clusters. It was originally proposed as a set of interfaces for processing large volumes of 

data streams, with the capability for data parallelism and fault-tolerance. Main components 

of Apache Spark is its Application Programming Interfaces (APIs) and its special data 

structure names as the Resilient Distributed Dataset (RDD). The RDD is a read-only 

collection of data items which are distributed over a cluster of machines which also 

provides fault tolerance.  This type of data-model reduce drawbacks in the MapReduce 

paradigm by eliminating batch processing and sequential dataflow and also lets iterative 

algorithms to operate over the dataset many times inside a loop to perform its analysis. 

Apache Spark and Spark Streaming concepts [30] use fast scheduling capabilities of its 

core project to perform advanced streaming analytics. The idea is to input datasets in small 

sets such RDD transformations on those mini-batches of data is fast, however the latency 
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is equal to the mini-batch processing duration. The TruSStReMark framework proposed 

by this dissertation uses further improve the performances of its both online and offline 

phases of its trust-based selection and recommendation algorithms (i.e., presented in 

CHAPTER 5, and CHAPTER 6).  
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CHAPTER 4. TRUSSTREMARK APPROACH 

The work presented here is based on our previous publications [88] [89]. The 

framework proposed by this dissertation is named TruSStReMark (i.e., Trust-based Service 

Selection and Recommendation for Online Software Marketplaces). This chapter 

introduces the main ideas and parts of this framework in the context of software apps and 

online marketplaces.  

To help in identifying the challenges associated with trustworthy service representation, 

selection and recommendation, the operation of an ideal system is considered in the 

following paragraphs. In social sciences, trust is defined as the relationship between entities 

such as person, people, communities, organizations and nations. It considers the dynamics 

of inter- and intra-entity interactions. The definition of trust is based on one entity (i.e., 

truster) willing to rely on the actions of another entity (i.e., trustee) performing functions 

and this situation is considered from the past to the future. From the truster’s view, 

collection of evidence about completed functions as expected can contribute to the 

trustworthiness of the trustee. Evidence can both increase and degrade trust, additionally, 

more evidence will increase the confidence in the judgment of the trustworthiness of trustee. 

When this scenario is mapped to assembling a software system, entities are thought of as 

software apps. In an ideal system, all evidence and related opinions about the trustee should 

be visible to all. However, the term ‘all evidence’ is weak (i.e., not practical), as there could 

be infinitely large number of parameters related to an entity. 
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Therefore, additional contextual information is needed to help prune the number of 

related parameters. For example, the comparison between the overall trustworthiness of a 

person against the trustworthiness of a persons’ driving capability is based on their history 

of accidents and/or friends’ opinions about driving. If all evidence related to a particular 

context is visible for all entities, then the trustworthiness could be inferred in an ideal 

system. However, in practice all evidence related to the context is not shared due to the 

public/private nature of attributes and relationship status between entities.  

In contrast to the other domains such as social sciences, trust related concepts are not 

well-defined in software apps and systems (which are composed out of apps). Also, if the 

truster has control over the action performed by the trustee, then, the truster has no 

uncertainty about the outcome of that action. In reality, this situation rarely exists and the 

truster is always uncertain about the outcomes of the other's actions. It can only assume 

and evaluate expectations or receive recommendations from others hence, this uncertainty 

involves the risk of damage (or even failure) to the truster, if the trustee does not behave 

as desired. On the other hand, any online service operation is highly dependent on the 

environment. If static views of service parameters are matched against service 

requirements, then important details are ignored such as whether the service delivers what 

it promises. Therefore, it is worth investigating modeling, specifying, selecting and 

recommending trust related aspects in integrating complex software systems.   

 

4.1 Motivation for TruSStReMark framework 

Due to of inherent features (such as, reuse, frequent updates and dynamic nature of 

the hosted environments) associated with the software domain, it is challenging to apply 
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existing product based approaches (such as ranking, selecting and recommending entities) 

to software marketplaces as they are. Compared to products which are described using a 

list of physical features, software is described using a list of virtual attributes. For example, 

most products have strict physical features such as weight and dimensions. However, 

software is usually described using an interface with a set of quality of apps (QoS features). 

These QoSs values may at times have associated ambiguity because of changes in the 

execution environment and presence of bugs. Therefore, in an online marketplace the 

comparison of consumer products to online software apps yields a key difference: that 

products have stable features while software evolve continuously over time. Appendix B 

of this dissertation presents a more detailed comparison physical products vs software.  

Moreover, while the selection of a product usually happen in isolation,  selection of  

software more often happens due to system requirement (i.e., need to use inside a more 

complex and distributed software system). Unlike products, software evolves from its 

initial release with continuous updates. Hence, information available about software needs 

to be evaluated in a time sensitive manner by keeping the uncertainty aspects of its 

behaviour in mind. For example, compare a physical product (e.g., a data backup storage 

device) and a software service (e.g., a cloud-based backup storage service). Physical 

product is self-contained, however, software service operated in an environment which is 

shared by other apps. Therefore, software apps has its associated uncertainty and time 

sensitiveness about its behaviour to work inside a system and the recommender system also 

need to consider these aspects while recommending any software. The selection and 

recommendation of software apps becomes easy when the environment of a product is 

fairly static, but becomes more complex when the software service has to work in a system 
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where the environment is dynamically changing. Figure 4.1 shows the interactions of 

stakeholders who are involved in service creation, publishing, indexing and consuming in 

marketplaces. Currently, the role of the service broker is optional and is replaced by large 

service marketplaces.  

The concept of trust is subjective in nature and is influenced by many related factors. 

The trustworthiness of an entity not only depends on its behavior, but also on anything that 

has a direct or indirect relationship with it. Hence, the trust of a service collaboration 

between a truster and a trustee depends on various factors such as previous direct 

experiences, indirect experiences, and common beliefs.  

 
Figure 4.1 Stakeholders’ interactions in online marketplaces [87] 

 

For example, the trustworthiness of a software service (which is a part of a larger 

software system) depends on both the trustworthiness of its features (e.g., evidence about 

its functional and QoS attributes) and the trustworthiness of its other interacting apps (e.g., 

evidences about successful collaborations). Calculating the trustworthiness of a software 

service is normally considered as an afterthought, rather than considering it as an essential 
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step during the selection of a service. These facts provided the motivation to investigate 

how to identify and quantify the trust of a software service.  

Uncertainty is associated with software systems due to the following reasons. It is hard 

to verify that a software system is free of bugs. Moreover, the contexts and associated 

environments are changing and possibility of failures of components of the system. Since 

the trust and uncertainty are inter-related, the trustworthiness of a software system can be 

expressed as a measure of a lack of uncertainty. Therefore, trustworthiness is a measure of 

confidence and also a measure of certainty. It is natural for developers and consumers to 

express conflicting opinions about their trust of certain attributes of a software. Moreover, 

different consumers have subjective opinions about the software systems based on their 

experience. Such situations are becoming more common in online marketplace 

environments. These reasons provid the motivation to investigate about a suitable trust 

model and to quantify trustworthiness of a service from software marketplaces. 

As a step towards creating trustworthy software systems involving heterogeneous apps, 

it is important to quantify the trust of individual apps and represent this by aggregating 

associated evidence over time. A software service may also provide different levels of 

service level agreements. For example, a cloud-based storage service could provide a basic 

efficient storage service and additional negotiable levels of the service based on other 

features, such as improved capacity and speed. The trust of these levels of varying QoS 

features need to be represented in a service specification which is accessible to consumers. 

A proper representation of trust aspects of apps (i.e., as a trust contract) can address the 

mismatch between self-description by service providers and expectations of the service 

consumers. These facts provided us with the motivation to propose a trust contract that 
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extends the concepts of multi-level specifications and represent the quantified trust values 

of service attributes inside it.  

At the end of the service selection, or completion of service recommendations, the 

consumer needs to have confidence about the apps. Although it is not available at this time, 

in the future, appropriate automatic negotiations will be initiated based on both service and 

systems requirements between consumers and marketplace. The main challenge in these 

service negotiations between service providers and consumers will be the lack of trust, 

which may lead to incorrect decision and designs. Hence, the service selection and 

recommendation algorithms provided by the marketplace need to consider trust aspects of 

apps, in addition to the functional and QoS features. Such a trustworthy service selection 

and recommendation processes will act as a precursor to service interactions. These facts 

motivated us to augment the marketplace-based prevalent selection and recommendation 

algorithms (which are based on techniques related to content-based and collaborative 

filtering techniques) to consider trust-based attributes of software apps. 

Based on the above motivations, let us consider the real-world scenario of searching 

for suitable public camera/sensor apps to be used in a distributed object tracking system. 

At the service selection (and also recommendation) time, investigating independent 

camera/sensor apps based on their specifications does not provide certainty of their 

behavior over a period of time. Instead, if the trust associated with the camera service is 

properly quantified and represented, it will provide a better foundation during the selection 

process and will also aid during the recommendations. However, this process is not trivial 

due to the heterogeneous nature of evidence, the time sensitive and dynamic nature of trust, 

and the presence of uncertainty. The following subsection provides a list of associated 



www.manaraa.com

64 
 

challenges and assumptions made by prevalent works. The work performed by this 

dissertation aims to provide the necessary foundations for overcoming these challenges.  

 

4.2 Shortcomings of Prevalent Approaches and Associated Challenges 

1) Compared to certain other domains, the trust of a software service is not well defined 

in the context of online software marketplaces. This is because understanding, 

evaluating, and resolving trust related issues are complex, costly, and time-consuming 

(especially during late phases of the software lifecycle). 

2) It is assumed that a static and complete view of information about software apps is 

available from the providers (i.e., from the marketplaces). However, in reality the 

information available about software apps and the software itself gets dynamically 

updated.  

3) It is also assumed that there is no uncertainty or ambiguity about the representation or 

behavior of the software and the environment. However, in reality there is uncertainty 

and distrust about the varying levels of QoS features.  

4) There are not many studies on evaluating trust in software systems, and these 

approaches do not provide a generalized trust model that is parameterizable with 

different application contexts. Moreover, the prevalent models are not evolvable across 

different phases of the software apps. 

5) The representations of service parameters based on temporal aspects are ignored. Given 

the dynamic nature of apps in an online marketplace, it is important to aggregate service 

behavior over time. 
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6) Not many approaches have attempted to quantify and represent trust related service 

attributes in such a way that this information can be updated frequently and the 

selection and recommendation algorithms to access them efficiently.    

7) The apps may not always behave as indicated by their specifications and contracts. 

However, evidence about service behavior violations and user feedback (describing 

these violations) is usually ignored. 

8) Consumers are responsible for inferring the trustworthiness of a service’s ability to 

meet requirements by analyzing available evidence (e.g., reviews). Hence, the 

confidence about the selected apps ability to provide required QoS values is not 

addressed in existing techniques of selection and recommendation approaches (such as 

Content-based Filtering (CBF) and Collaborative Filtering (CLF)). 

9) Analyzing external evidence presents a challenge when the number of apps are 

increasing in marketplaces each day. However, the performance of service selection 

and recommendation should be near real-time and should be transparent to the 

consumers of software marketplaces.  

10) Waiting too late in the service lifecycle to understand, evaluate, and resolve trust related 

issues can be a costly and time-consuming process. Therefore, trust-related concerns 

should be identified, aggregated and presented to the consumers by the marketplace in 

an appropriate manner.  

Because the concept of trust crosscuts all functional and QoS aspects of the apps, it 

presents a challenge. The above mentioned challenges and limitations are evaluated as the 

starting points of this proposal of TruSStReMark framework. The trust aspects related to 

the challenges and the ambiguous nature of the limitations are addressed in this dissertation. 
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Hence, the TruSStReMark framework incorporates trust-related evidence and opinions 

during modelling, representation, selection and recommendation of confidence related to 

software apps.  

 

4.3 Overview of TruSStReMark Framework 

Before trust-based enhancements are presented by the TruSStReMark approach, the 

abstract problems of service view and model, representation, selection and 

recommendation are formally defined in the following paragraphs. 

(1) Abstract view of a service and model in a marketplace are defined as follows: 

- Service Marketplace (M) consists of Apps (i.e., Service Universe (U)) which are 

uploaded by a set of individual Service Providers. The difference between M and U is 

that M is always a subset of U, because apps get moved from one marketplace to another. 

- It also has a set of Service Consumers (C), each member of which has different Service 

Requirements (R). The problem of Service View is how the Marketplace defines a 

particular characteristic of a software service (e.g., the trust of a software service) 

The problem of Service Model is how to govern of the lifecycle the Service Universe 

which can facilitate efficient service representation selection and recommendation. 

(2) Service Representation is defined as follows:  

- Service Universe (U) consists of the set of all publicly available service specifications 

as a list which is denoted as (S).  

- Any Service Specification (Si) is Si ∈ U such that 

    - Si contains ‘n’ service parameters Si = (P0, P1 …. Pn) 
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Service Representation is the problem of identifying suitable representation mechanisms 

to organize, categorize and publish different service parameters (P) such that it facilitates 

efficient service selection and recommendation. 

(3) Service Selection Problem is defined as follows: 

- Systems Blueprint (B) contains individual Service Requirements. e.g., a Service 

Requirement (Ri) is Ri ∈ B 

   - Rj contains m service parameters Rj = (P0, P1 …. Pn) 

 - Marketplaces contain public service specifications (a service is named as Si). 

- There can be multiple apps which match to a particular set of requirements such that Rj 

⊆ Si or Rj ⊇ Si or Rj = Si. 

The Service Selection problem identifies a set of apps by matching against a given set of 

requirements (ranked in the order of relevance). 

(4) Service Recommendation Problem is defined as follows; 

- There exist many apps which could suggest or provide additional apps which can 

support or replace entities in the system according to a given Ri. 

The Service Recommendation Problem suggests service recommendations based on 

service parameters (ranked in the order of relevance).  

The following subsections present how the TruSStReMark framework enhances the 

abstract problems to include trust-based aspects by incorporating an evidence-based 

approach. The first step in the TruSStReMark framework is defining a concrete trust model 

for software apps. 
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4.4 Trust Views and Trust Model [13] 

This subsection contains a summary of our server paper [13] on trust views and models. 

As there are many definitions and views of trust, it is necessary to identify if there exists a 

commonly agreed upon view and an associated method of quantification that is suitable for 

software-intensive systems. In [13] we have performed a comprehensive survey of 

different views of trust of software apps spanning over 25 years. This survey revealed the 

following findings: (1) trust of a software system is subjective in nature; (2) uncertainty is 

an inherent part of trust evaluation; (3) it is important that the trust attributes be aggregated 

during all phases of software lifecycle; (4) trust evaluations of prevalent approaches do not 

consider both internal view (i.e., the developer’s point-of-view) and external view (i.e., the 

user’s point-of-view) of software apps; and (5) it is important to capture the temporal and 

dynamic nature of trust, especially when considering online software services within a 

changing environment. We started to investigate both of the individual service level 

(bottom up) and the system level (top down) of how to integrate trust. In this dissertation, 

we have taken the bottom up approach.  Also, the survey has aggregated and analyzed the 

trust definitions and models of software to understand how to define the trustworthiness of 

a software service.  

  

4.4.1 Trust Views of a Software Service  

In our previous survey [13], the differences and commonalities between various trust 

definitions from 80 peer reviewed publications have been identified and categorized. It also 

presents both automatic and manual categorization of existing trust definitions and these 

categories show that the research community has accepted the inherent attributes of trust 
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of software such as subjectivity and uncertainty. In that survey, the trust definitions listed 

are categorized based upon different factors. Most definitions follow the view that trust is 

a relationship between two entities: the truster (i.e., the entity that initiates the relationship) 

and the trustee (i.e., the entity whose trust is being evaluated). In this relationship, third-

party entities can also be involved in the form of past users, recommenders, and certificate 

authorities. With this basic understanding of trust, an automatic classification using Carrot2 

tool [79] on the collected set of trust definitions was carried out. The main goal of this 

classification effort was to determine if a prominent definition or a set of related views 

about trust are accepted as the main choice by researchers.  

 
Figure 4.2  Clustering of the trust views of different publications [13] 

 

The open source Carrot2 classification tool [79] was used to classify these 

aforementioned research efforts because it supports many clustering algorithms (e.g., K-
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means clustering algorithm, Lingo clustering algorithm, and Suffix Tree clustering (STC) 

algorithm). All the identified trust definitions were transformed into a suitable input format 

for Carrot2, then K-means and STC algorithms were performed on them. These two 

algorithms were used because Carrot2 selected them as the best performing clustering 

algorithms against the given inputs. From the analysis presented in [13], it is possible to 

acquire some insight about which trust definitions (and the associated publications) share 

similar views on trust. However, it is difficult to obtain in-depth information about the 

similarities and differences between different trust definitions from the classification alone. 

For example, it is difficult to identify which trust definition, or set of trust definitions, is 

more prominent than others. As there are many similar sized clusters, and many 

publications that share different clusters, clustering algorithms fail to find trust model 

similarities using the different phrases of software life-cycle, which are explained in natural 

language. In the case of the K-means clustering, the result illustrates which trust-related 

publications are within similar domains.  

For example, there is one cluster for peers’ reputation and one cluster for service 

monitoring aspects of trust. However, each cluster does not clearly indicate any further 

details, such as the perception of trust. When compared with the K-means results, the STC 

results provided additional levels of details such as which trust views are shared among 

clusters. More specifically, the STC results showed which trust definitions are related (i.e., 

in dictionary meaning) to each other and which clusters are not. This relation is determined 

by the distance between the clusters. Based on these results, only high level information 

about the trust models can be discovered, and there is not enough information to identify a 

dominant trust definition or a trust model. Therefore, further analysis was performed 
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manually (i.e., by reading and analyzing these publications) to further evaluate the existing 

trust definitions. 

Table 4-1 Trust-related factor with respective to owner of the view [13] 

Association List of Factors 

With 

Truster 

1. Decision (subjectivity) 2. Ability to monitor trustee 3. Functional 

requirements 4. QoS requirements 5. Willing to be vulnerable 6. 

Willingness for benefits 7. Context 8. Knowledge 9. Experience 10. Policy  

With 

Trustee 

1. Reputation 2. Functional capability 3. Non-functional capability 4. 

Security and safety 5. Cost or competence 6. Development cycle 7. 

Owner’s reputation  

With 

Neither 

1. Compatibility with others 2. Third-party experience 3. Dynamic nature 

of trust 
 

The manual analysis carried out in [13] considered various trust definitions and 

models based on factors such as different entities involved in the trust relationship. The list 

of selected publications were manually categorized based on the trust factors and the 

publications that associates with these factors. The critical question to be answered in the 

context of complex software system is as follows: at which points in the software life-cycle 

of these services should trust be taken into account? This is crucial because the integration 

of trust into the software life-cycle of such service enables evaluating and reasoning about 

their trust-related properties. As indicated in Table 4-1, there are three main ways of 

categorizing trust associations: associations with truster, associations with trustee, and 

associations with others (i.e., the views that are not related to either the truster or trustee). 

The analysis provides a detailed categorization of each of these factors. The factors 

associated with the truster are various concerns such as benefits, experiences, and the 

subjective choices. The factors associated with the trustee are concerns such as owner’s 
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reputation, the software life-cycle, and (non-)functional capabilities. The third category 

includes the factors not belonging to the two previous categories, such as the compatibility 

between truster and trustee, and experience about other agents. The analysis section of this 

survey paper then summarizes each of these factors that resulted from the manual 

categorization. 

This survey identified factors that reinforce the key idea that trust is a subjective 

concept. This paragraph briefly presents the definition of each factor in the context of 

software services (in depth details are presented in the journal publication [13]). The 

following are the list of related factors involved with truster: (1) Truster’s decision: A 

truster’s decision is a predicate that the truster perceives of the trustee. (2) Truster’s 

(in)ability to monitor trustee: A truster’s (in)ability to monitor the trustee is whether the 

truster is able to monitor the trustee (i.e., collect indirect evidences) before directly 

interacting with the trustee. (3) Truster’s functional requirements: A truster’s functional 

requirements are the set of functionalities that the truster expects to consume to fulfill its 

computational requirements. (4) Truster’s non-functional (QoS) requirements: A 

truster’s non-functional requirements are the set of QoS constraints that the truster requires 

to be fulfilled when consuming the trustee’s functionality. (5) Truster’s willingness to be 

vulnerable: A truster’s willingness to be vulnerable is defined as it being aware that its 

interactions with a trustee may fail and cause itself a loss. (6) Truster’s benefits: A 

truster’s benefit is the profit or advantage that the truster expects to gain by interacting with 

the trustee. (7) Truster’s context: A truster’s context is the environment of the truster 

when interacting with the trustee. The context includes the truster’s execution platform, 

location, and mobility (i.e., the truster’s ability to move freely). (8) Truster’s knowledge: 
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A truster’s knowledge is the evidence accessible to the truster about a trustee that can be 

used in evaluating its trust about the trustee. (9) Truster’s experience: A truster’s 

experience is the knowledge that the truster has gained from all direct evidence about a 

trustee (i.e., the evidence from past interactions with the trustee and observations of the 

trustee about interactions with others). (10) Truster’s policy. A truster’s policy is the set 

of principles or rules that guide the truster in evaluating trust about a trustee. ).  

Following are the list of related factors involved with trustee: (1) Trustee’s 

reputation: A trustee’s reputation is a measure of positive feedback or negative feedback 

(e.g., ratings and comments) that the trustee has received from its past interactions with 

different trusters. (2) Trustee’s functional capability: A trustee’s functional capability is 

its ability to perform a desired action or behavior. (3) Trustee’s non-functional attributes: 

Trustee’s non-functional attributes are the set of QoS guarantees provided by the trustee. 

(4) Trustee’s security and safety: A trustee’s security is the set of security properties 

provided by the trustee. (5) Trustee’s cost or competence. A trustee’s cost is the amount 

that a truster should pay to obtain the service of a trustee. (6) Trustee’s development cycle: 

A trustee’s life-cycle is a trust factor that shows how the trustee is constructed throughout 

its life-cycle. (7) Trustee’s owner’s reputation: A trustee’s owner’s reputation is a 

measure of the positive feedback received by the owner of the trustee.  

Finally, the following are the list of related factors involved with neither truster nor 

trustee: (1) Compatibility between truster and trustee: Compatibility between the truster 

and the trustee is the ability to work together towards achieving a common goal. (2) Third-

party experience: Third-party experience is the available evidence of interactions between 
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the trustees with the third-party entities. (3) Dynamic and fuzzy nature of trust: Software 

becomes updated frequently; hence, their features and qualities change over time.  

Also, the categorization shows that the following important factors are related with 

trust definitions: experience, willingness to be vulnerable, willingness to acquire benefits 

from truster’s side, plus reputation, QoS, and functional capabilities from trustee’s side. 

More details about each of these factors, with examples, can be obtained by referring to 

the sections the Survey paper [13]. 

  

4.4.2 Trust Model of a Software Service 

The trustworthiness of a service not only depends on its behavior, but also on anything 

that has a direct or indirect relationship with it. For example, as part of a composed software 

system, the trustworthiness of a service depends on: 1) the trustworthiness of its features, 

such as all reported evidence about its service guarantees, and  2) trustworthiness of all other 

related entities, such as evidence about cloud services with which the service often 

communicates. Considering these aspects, and based on the views from the Trusted 

Computing Group [15], (i.e., “An entity can be trusted if it always behaves in the expected 

manner for the intended purpose”), we have defined the trust associated with a software 

service as the “degree of conformance of its behavior (both functional and non-functional) 

to its published specification (all the levels of contracts)”.  

Also, our previous work has presented a trust model focusing on different artifacts 

produced at each phase of the software lifecycle [80]. Artifacts are conceptual or physical 

outcomes of a particular phase of the software lifecycle. An example of an artifact is a test-

case created during testing phase. Each artifact has a set of properties that can be evaluated 
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by the developers, by the users or by both. These represent internal and external evaluations. 

The evaluation of a property of an artifact could be different for each artifact and involves 

different stakeholders. This evaluation creates a set of evidence which needs to be 

aggregated using a suitable quantification model.  

 
Figure 4.3 Trust model proposed for evaluating trust along the service lifecycle [80] 

 

Figure 4.2 presents the outline of the model used in the TruSStReMark framework 

[80]. The internal view of the properties is related to the developer’s interactions with the 

artifacts throughout the lifecycle, such as coding conventions and unit testing. In contrast, 

the external view of the properties represents end-user's measures of the artifact based on 

all evidence such as user comments and ratings about the artifact.  

Let us consider applying the above model to a complex software system with strict 

QoS constraints on timing and resources, such as processing power, memory, and battery 

power. The model evaluates trust of artifacts in each phase of the software cycle—without 

limiting to the artifacts in deployment phase. In this evaluation process, for each phase, the 

artifacts and their relative importance have to be identified. For example, in the 

development phase, the classes and components that affect real-time and resource 
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constraints have to be given higher priorities. After the artifacts are identified, their trust 

values have to be evaluated from both internal and external perspectives. These evaluations 

can use a quantification mechanism, such as subjective logic [23] base tuples of 

<Believe;Disbelief;Uncertainty> (for more details on Subjective Logic refer to Subsection 

3.2.2).  After quantification both internal and external views are represented in two (B, D, 

U) tuples. Defining policies to evaluate the trust of each of these views is a complicated 

task as it should consider many factors, such as the identifying properties and their 

importance, quantifying trust values of the properties and defining operators on composing 

trust values. 

For example, when evaluating components in the development phase, we can assign 

weights to each class and function based on their effect in realizing the QoS constraints. 

We can then use weighted averages to compose trust values. These weightages can be 

adjusted over time from the feedback of the users. That is, if the trust value evaluated from 

the internal view disagrees considerably with the trust value evaluated from the external 

view, then the internal trust policy should be adjusted by updating the relative weights of 

the properties. Similarly, each of the properties can be incrementally quantified as (B, D, 

U). For example, when evaluating the internal trust of functions in development artifacts, 

the properties such as proofs of time and space complexities of the algorithms, which 

directly affect the real time and resource constraints, can be considered. As the amount of 

all evidence are less in number at initial stages, the uncertainty (U) associated with the 

artifact will have a higher value. When more evidence get collected, the belief (if the 

evidence agrees with QoS constraints) or disbelief (if the evidence disagrees with QoS 

constraints) associated with the artifact will improve over time. Finally, to evaluate the 
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overall trust, the (B, D, U) values derived from both internal and external policies have to 

be aggregated. It is possible to assume when an artifact is released to its user base (before 

users have experienced the artifact), the uncertainty of the external trust is very high. At 

early stages of the artifact, the consideration of internal trust should be high when 

evaluating the overall trust. As user experience grows, the external trust should be given 

higher consideration. 

In order to evaluate trust at each phase of the software lifecycle, we have to evaluate 

trust at each intermediate phase. Moreover, the results (or output) of one phase must serve 

as the properties (or input) of another phase. With this in mind, we denote the intermediate 

result of a phase as an artifact (a). Likewise, there could be multiple artifacts as the result 

of a phase. Artifact trust is a measure of how much the artifact meets its expected outcomes. 

Also, artifact trust can impact the overall trust of the system. At each phase of the software 

lifecycle, different artifacts interact with different users, who have certain views about state 

and behavior of artifacts. It is important to identify what is essential for evaluating trust 

from these complex interactions and views. We call these properties of the artifact, which 

are denoted as pa. 

Each artifact contains a set of properties that can be viewed either internally or 

externally. The evaluation of a property of an artifact could be different for each artifact 

and involves different stakeholders. This evaluation creates lot of evidence that allow the 

developer and users to provide their views of a service’s trust, and accounts for the 

subjective nature associated with a service. The internal view of properties (IVpa) 

represents processes associated with realizing the artifact throughout the lifecycle, such as 

coding conventions and unit testing. In contrast, the external view of properties (XVpa) 
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represent user experiences about the artifact. Using the above definitions, our trust model 

will build upon the subjective logic [23] defined by Jøsang (for more details on Subjective 

Logic refer to Subsection 3.2.2, where trust is defined as the tuple of (B;D;U). We selected 

this trust model as the foundation for our approach, because it addresses uncertainty 

associated with trust, while providing essential operators for trust aggregation and 

comparisons. 

Table 4-2 Internal and External Views [12] 
Artifact Phase Internal View Properties External View Properties Trust 
(1)Requirement 
specification 

Requirements Use cases, State charts, 
Data flow diagrams 

Infeasible or 
Contradicting/- 
Supporting requirements 

IVpa (B;D;U); 
XVpa (B;D;U) 

(2)Design 
specification 

Design Class Diagrams, 
Component 
Diagrams, Requirements 

Anti-patterns/code-
smells 

IVpa (B;D;U); 
XVpa (B;D;U 

(3)Classes/ 
Components 

Development Functions, Source code, 
Code Coverage, Design 

Features, profiling results IVpa (B;D;U); 
XVpa (B;D;U 

(4)Test Oracle, 
Test Suites 

Testing Test scripts, Test cases Test coverage, Test 
Results and Remarks 

IVpa (B;D;U); 
XVpa (B;D;U 

(5)Integrated 
system 

Integration Classes/ Components, 
Integration Framework 

The integration test 
results 

IVpa (B;D;U); 
XVpa (B;D;U 

(6)Deployed 
service 

Deployment Integrated system, 
Deployment 
Framework 

Features, Reputation 
(Rating/Feedback), 
Behavioral knowledge 

IVpa (B;D;U); 
XVpa (B;D;U) 

 

For a complex software system, at a particular software lifecycle phase, and for a 

particular artifact a, there exists an internal view of properties (IVpa) that could be defined 

as an aggregation of set of internal properties PI where pa(PIi) . Each property can be 

evaluated with respect to a tuple of (B)elief, (D)isbelief, and (U)ncertainty as Ti = (Bi;Di;Ui). 

Trust of the internal view of an artifact T(IVpa) is therefore defined as the collection of 

(B;D;U) tuples of internal properties. The internal view’s evaluation is based on the 

inherent properties of the artifact, such that it is made of (i.e., factors). This evaluation 

should give prominence to the properties related with time and resource constraints. The 

partial list of such inherent properties to be considered during each phase of the software 
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lifecycle for different artifacts is provided in Table 4-2. According to this table, artifacts in 

early phases are part of the inherent properties of artifacts in later phases. For example, a 

component’s design in the design phase is an inherent property of the same component’s 

implementation in the development phase. 

In contrast, the external view’s evaluation is based on external user experience of the 

artifact, e.g., set of evidence that the user collected when interacting with the artifact. The 

external users of an artifact during a particular phase of a software lifecycle include internal 

and external users of artifacts in following phases. For example, external users of the 

requirement specification can be identified as design engineers who try to achieve the 

requirements from their designs, the software service developers who implement the 

requirements, and the service consumers who use the features mentioned in the 

requirements. Each user may have a differing opinion about the requirements based on 

their interests and context. The user can collect the evidence from direct experience, e.g., 

first hand usage, or the indirect experience, e.g., user ratings/recommendations. The 

external view of different artifacts is provided in Table 4-2. 

Finally, for a software service, at a particular software lifecycle phase, and for a 

particular artifact (a), overall trust of the artifact phase T(a) is as an aggregation of both 

T(IVpa) and T(XVpa). When evaluating the trust of a software service, which is also an 

artifact, using this model, the trust of artifacts in preceding phases of the software lifecycle 

are implicitly considered in its internal trust value. The trust of a software service is 

therefore an aggregation of trust of artifacts in all the phases. We have used this model in 

our TruSStReMark framework, however during the experimentation and analysis external 

views were the main focus.  
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4.4.3 Trust-based principles for reusing services 

There are two kinds of important trust-related factors related to the software lifecycle 

of service: direct and indirect. Direct factors are related to a particular phase of the software 

life-cycle. For example, if a trustee is a reusable service, then its functional and non-

functional capabilities are directly related to the selection of that service to be integrated to 

the system. In contrast, indirect factors, in addition to affecting a specific phase, also impact 

other phases of the software lifecycle. For example, if a selected service has trust issues, 

then there will be trust issues during the phase of composition of that service with other 

services. Both direct and indirect trust factors may increase the uncertainty associated with 

the outcome of the software system. Therefore, adhering to a set of principles for 

identifying, describing, quantifying, and evaluating trust during all associated phases of the 

software life-cycle is critical in the design or reuse of services recursively for each sub-

service which they will depend upon. 

Hence, we have identified the following eight principles for identifying, describing, 

quantifying, and evaluating trust for the software lifecycle of service [13]. These principles 

are as follows: (1) trust requirements, (2) trust representation, (3) trusted design and 

associated knowledge base, (4) trust specification, (5) comparison and selection based on 

trust, (6) countermeasures for trust, (7) composition of trust attributes, and (8) evaluation 

and maintenance of trust. Each trust-based principle is evaluated using a set of set of 

evidence that is obtained either internally or externally. Figure 4.4 illustrates how these 

trust related factors can be applied to identified related a principles, within the lifecycle of 

individual software services and to a complex software system.  
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Figure 4.4 Application of trust factors to the principles while developing a complex 

software system [13] 
 

All the above mentioned principles together present a structured method of realizing 

a software-intensive, trusted, and complex systems created from individual software 

services. An adherence to these principles allows reasoning about the trust value of such 

systems – reinforcing the need for the consideration of trust as a continuous objective 

instead of an afterthought while realizing such complex software systems such as a 

Distributed Tracking System presented in Figure 4.5.  

The next set of paragraphs briefly describes the incorporation of these principle to a 

complex system as a case study to assemble a Distributed Tracking System (DTS) (i.e., a 

system which can track moving targets using set of distributed sensors). The idea is to reuse 

available services using marketplaces and assemble this complex system. To assess the 

overall trust (TDTS) of the DTS, trust of each reusable service and their trust values need to 

be investigated. These services and their corresponding trust quantifications (as seen in 

Figure 4.4) are named as: object markers (TOM), sensor services (TSS), discovery service 

(TDS), control service (TCS), and fusion service (TFS).  
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Figure 4.5 Illustration of required services of Distributed Object Tracking System and 

their interaction and communication patterns [13] 
 

The following discussion only focuses on the sensor service, specifically, the reuse of 

a Webcam service, and how the aforementioned trust-related principles are used in the 

context of a Webcam service. Hence, a similar approach can be followed to evaluate other 

services (referring to Figure 4.4 and Figure 4.5).   

Application of Principle 1 (trust-based requirements): As indoor tracking is a quality-

aware application, it has strong non-functional requirements such as an overall response 

time of around 30 milliseconds (ms) and an accuracy of 5 meters (m). These non-functional 

requirements need to be decomposed into appropriate requirements for each services such 

as the Webcam service. The truster is the DTS integrator and the trustee is the specific 

Webcam service. The truster needs to define its trust-related requirements (e.g., a specific 

opinion about a Webcam service, an ability to monitor status of a Webcam service, and an 

adherence to requirements such as 30 ms of response time). Similarly, the trustee needs to 

specify its trust-related factors such as maintain its reputation, meeting its functional and 
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non-functional requirements, and compatibility with other sensor services. In this situation, 

the trust-based requirements of the truster and the trustee need to be compatible with each 

other. Application of Principle 2 (trust-based representation): The Webcam service 

developer may decide to select the subjective logic-based trust representation suggested in 

the previous subsection, because of its advantages that are listed in Subsection 4.5.2. 

Application of Principle 3 (trust-based design artifacts and knowledge base): An example 

of the design artifact for the Webcam service is its loose coupling nature with the other 

services (i.e., ability to act independently), while cooperating with other sensor services or 

semantics associated with its replacement by another Webcam service. The corresponding 

knowledge base would aggregate related information such as a list of which camera 

services have better trust attributes and reputations. Application of Principle 4 (trust-

based specification): A specification of a Webcam service will indicate, in a formal manner 

such as a trust-contract described below [81], the functional and non-functional attributes 

of that service along with, for example, the [B, D, U]-based quantification of these non-

functional attributes. The [B, D, U] tuple associated with the ability of the Webcam service 

to meet the response time deadlines may be quantified as (0.8, 0.1, 0.1) based on all 

evidence available from the empirical testing of that Webcam service by the developer (i.e., 

the internal view) and the reviews provided by the users of this Webcam service (i.e., the 

external view). Similarly, other trust attributes of the Webcam service will be quantified 

and specified. Application of Principle 5 (trust-based comparison and selection): When 

comparing two Webcam services, the service with the higher B, lower D, and lower U is 

preferred when compared with others – and if the selection and matching criteria (such as 

described in [80]) also include trust-based matching operators, then the application of 
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Principle 5 is complete. Application of Principle 6 (trust-based countermeasures): After 

selection, an investigation of selected services for their future threats and listing 

countermeasures against possible risks of the selected services can be viewed as adhering 

to Principle 6. Application of Principle 7 (trust-based composition): Because the DTS is 

composed of many sensor services, a judgment needs to be performed about the overall 

trust of the DTS from the trust-specification of the selected services. For example, our 

recent work has used a composition model that considers individual [B, D, U] tuples and 

interaction patterns between services to predict the trust of the composed distributed system. 

Application of Principle 8 (trust evaluation): Finally, the evaluation of the trust of the 

Webcam service can be performed by its periodic assessment to decide if it is meeting (or 

not meeting) its role and specification due to either the change of DTS requirements or 

internal updates within the Webcam services, then take actions needed to either update or 

replace the services. Similarly, the other entities (Objects Markers (OM), Discovery 

Service (DS), Control Service (CS), and Fusion Service (FS) in Figure 4) in the DTS can 

follow this approach, and the trust of each subsystem can be investigated. Therefore, 

following this model, the overall trust of the DTS (TDTS) will be defined as, TDTS  =  TSS  ∩  

TOM ∩  TDS  ∩  TCS ∩  TFS. The earlier discussion includes a sample application of the 

proposed trust model which used by this dissertation our previous publications provide 

more details of this approach ( [12], [13], [81] [80], [82]). 

 

4.5 Trust Representation in the specification 

In general, a specification describes a feature precisely, using a formal technique. 

Specifically in the software domain, a service specification publishes syntax, semantics, 
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and QoS information to interested users of the service and is periodically verified usually 

when the service is getting updated. In the context of trusted software systems, a 

specification should expose, or publish, different attributes including details about trust-

related factors to the outside world. Hence, the service providers creates services and 

publish service metadata (more broadly a service specification) to the outside world.  The 

outside world consists of trusters (i.e., service consumers) who are now possibly exposed 

to a limited set of information about a trustee. The published information describes the 

trustee and is approved by the trustee itself or by a trusted third party (i.e., in this case the 

online service marketplace). 

As services and user requirements for these services become complex, such a simple 

specification and selection scheme is far from being adequate. Hence, A typical service 

specification now has multiple levels of contracts and this was first advocated by Beugnard 

et al. [52]. They have proposed four distinct levels in the specification of a service contracts, 

namely, syntax, semantics, synchronization, and QoS. The levels include functional 

attributes, (i.e., syntax and semantics contract information), non-functional attributes (i.e., 

QoS) and synchronization attributes (i.e., concurrent access policies). 

These levels are at a varying degree of negotiations – non-negotiable at the type and 

syntax levels to highly-negotiable at the QoS level. Multi-level specifications do offer more 

details about the services than the basic contracts. However, they still do not include a 

formal quantification of the trust values. Hence, it is hard to determine whether a service 

actually delivers what it promises by merely inspecting its contract. One possible solution 

to overcome this issue is to define a separate trust contract of each service with appropriate 

aggregated information about various evidences related to its multiple levels. The concept 
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of trust permeates all these levels and this dissertation proposes a trust contract which refer 

to other levels of contracts and their attributes. However, service developers are expected 

to create such a multi-level contracts along with the deployment of their services. It is 

widely noticed that the developers typically tend to over specify service qualities (either 

using the basic or multi-level contracts) and the users presume that a service delivers what 

it specifies, often leading to a mismatch between promises and expectations. Therefore, it 

is hard to determine whether a service actually delivers the contracts by inspecting a service 

specifications unless there exist a separate trust contract of that service with appropriate 

aggregated information. 

If we are to include a trust contracts with details as we proposed in the previous 

subsection, it will be quite different from the existing contracts such that the specification 

can contain different trust representations about its published attributes relating to its other 

contracts such as functional and non-functional contracts. For example, a service 

specification can indicate as an attribute which indicates the observed response time is 

between [10, 30] milliseconds. The trust representation of the same attribute, however, can 

be represented using (B, D, U) as (0.9, 0, 0.1), or a user rating of (4.5/5.0), or a confidence 

of recommendations as 90%. A trust specification for a software service, therefore, can 

contain multiple trust representations for different attributes. 

These services get updated frequently hence, their features and qualities change over 

time. As a result, the trust of the software also fluctuates over time. For example, this 

dynamic and fuzzy nature of software is visible in emerging software marketplaces (e.g., 

Android-based mobile applications that are available from the Google Play Store). Over 

time, the software in such marketplaces is updated and frequently becomes pushed to the 
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clients. When such updates happen, the tones of user reviews may change. Our previous 

work [89] [88], [90] describe a scheme to evaluate user reviews and recommend software 

based on their calculated trustworthiness. The work treats Android-based applications as 

software services and quantifies the trust associated with a service. This quantification of 

the trust is achieved by monitoring and aggregating various available evidences about 

Android applications from text-based user reviews. The usefulness of this approach is 

shown by the quality improvements carried out through the service selection process.  

A first step in trusted service selection and recommendation is to require the individual 

service specifications to incorporate a proper quantification of trust. However, current 

approaches to service specification ignore this trust aspect and use semi-formal techniques 

for describing a set of functional and QoS attributes with corresponding values. After these 

specifications are deployed, along with the services instances, a typical selection process 

uses simple matching schemes to compare available service specifications against user 

provided requirements. This is the simplest form of service specification and selection. We 

refer to such a service specification as the basic contract of a service. However, the 

important questions for the service consumers are: (1) does the service always deliver its 

functional attributes, with associated QoS, described in its specification? and (2) is the 

service selection mechanism capable of incorporating the principles of trust while 

delivering relevant services to its consumers for specific queries? 

Hence, this dissertation proposes an evaluation model and provides the necessary basis 

for trust quantification, addresses a number of issues present in other representations (such 

as capturing uncertainty), and is simple enough to be used extensively in trust calculations 

of large and complex software system. Based on this reasoning, this dissertation considers 
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trust-based evaluation to be another basic principle that affects all the other principles and 

should be considered as early as possible during the development of software-intensive 

systems. 

 

4.5.1  Structure of the proposed modifications to service specification 

Complex queries impose higher weightages on a particular service requirement such 

as low power usage for a mobile weather application (i.e., an example service from an 

online marketplace). Therefore structure and organization of information published in the 

service specification plays an important role. Providing a set of attributes and values as the 

service specification and matching it against a user provided values is the simplest form of 

service selection. As services become complex, the organization of the service 

specification is important for the performance of the service selection process.  
 

 
Figure 4.6 Structure of the modified multi-level service specification [90] 

Prevalent Service Specification  

//Level 0 (L0): General Level                                                Strict 

- Service type, cost and license                  Functional 

//Level 1(L1): Syntactic Level 

- Interface details   

//Level 2(L2): Behavioral Level                                            Trust 

- Pre-conditions, Post-conditions 

//Level 3(L3): Synchronization Level           Non-Functional 

- Synchronous access details                  

//Level 4(L4): QoS Level 

- Different qualities of the service                                      Negotiable 

//Level 5(L5): Trust Level 

- Trustworthiness of qualities of the service       
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Multi-level specifications do offer more details about the services than the basic 

contracts. However, they still do not include a formal quantification of the trust values. 

Hence, it is hard to determine whether a service actually delivers what it promises by 

merely inspecting its contract. One possible solution to overcome this issue is to define a 

separate trust contract of each service with appropriate aggregated information about 

various evidences related to its multiple levels as indicated in Figure 4.6.  

 
Figure 4.7 Structure of the proposed specificaiton with added trust contract [88] [90] 

 

Such an enhancement will enable to answer the two questions (‘1’ and ‘2’) raised 

earlier. Since, there is no way to quantify the trust about published service metadata, the 

current service delivery and selection mechanisms tend to largely ignore both these 

questions. Such an approach is clearly not acceptable as more and more complex systems, 

composed out of available services, are demanding high-confidence. To address this issue, 

the TruSStReMark framework is proposing a trust contract which aggregate the evidences 
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based on the trust model described in the previous subsection. These aggregated evidences 

are numerically quantified using subjective logic to be presented near the QoS attributes of 

the service and periodically being updated.  

Hence, as a part of the specification, it is necessary to a separate trust contract (related 

to the other levels) of the service specification to indicate the trust-related evidences and 

opinions Figure 4.6. With a correct organization and aggregation of trust, the service 

selection process can monitor and aggregate the success or failures of the service as a 

measure of delivering what is mentioned in its specification both as a single value and also 

in finer levels of detail. If a comprehensive trust contract is available as a part of the service 

specification, some smartphone service developers who’s target is to earn by forcefully 

display advertisements can be identified. For example, mobile battery life is targeted by 

developers to trick the users to install custom apps by informing their app charges the 

battery. The evidences aggregating in the trust contract can detect that the service is not 

delivering what is specifies. However, the challenge is to control, manage and filter 

exploding number of evidences. 

  

4.5.2 Structure of the proposed Trust Contract 

There could be multiple approaches to represent trust attributes within a service contract. 

One approach is to add trust related information along with the other information of the 

multi-level contract. This approach, however, breaks the progression of contract 

information (from non-negotiable to dynamically negotiable). To preserve the subjective 

and negotiable nature of the trust, it is more appropriate to define the trust contact as a 

separate level and associate it with other levels of multi-level specification as shown in 
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Figure 4.7. Our multi-level specification is similar to the one preposed by Beugnard et al. 

[52] and consists of four levels (i.e., component (general), functional (syntactical and 

behavioral semantics), non-functional (QoS) synchronization and trust). We augment these 

four levels with an initial level that describes bookkeeping information about a service (e.g., 

version number) and the attributes making up that level are called as component attributes.   

- Si is typically arranged into levels L = (L0, L1 …. L5…). 

- Each service parameter Pi has an associated level from Lj. 

- For example, if Quality of Service (QoS) is considered as L4, and accuracy (P0) is 

considered as: P0 ∈ L4. 

The trust aggregation is always in relation to a reference of another level. Theory of 

evidence [22]  and subjective logic [23] are used to aggregate trust and represented as trust 

contact of a service. Based on our trust model presented in the previous subseciton, a tuple 

of B,D,U (Belief, Disbelief, and Uncertainty) is calculated using evidences of a property 

of an artifact (i.e., conceptual or physical outcomes of a particular phase of the lifecycle).  

  Figure 4.7 indicates how the test contract refers to each section of the existing contract 

and include bother internal and external views of evidences. For example, a mobile app 

could indicate the battery usage as a non-functional attribute at the  level C. Based on the 

current evidences (such as developer testing results) available internally, the developers 

can calculate a B,D,U value such as (0.95,0,0.05). Although, the internal view of trust tend 

to over specify based on developers confidence, the external view aggregates and shows 

users views on the app’s battery life based on evidences they provide as an aggregated 

B,D,U value such as (0.6,0.3,0.1). The aggregation of these individual BDU tuples is done 

by subjective logic operators such as the conjunction and consensus. For example, when 
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multiple opinions are present, such as (e.g., consistent or conflicting user reviews about 

Response-Time of a service) then the consensus operator is used to aggregate these 

opinions. 

 
Figure 4.8 Dynamic nature of the Trust Contract [89] [90] 

 

It is expected that the trust contract will change over time. A well-accepted method to 

address this change is to update the contract at each milestone associated with the software 

service (i.e., with each new version). Considering history, however, is an important part in 

the process of reasoning about trustworthiness of any service. The trust contract therefore 

should allow for maintaining the history associated with the service unlike the other levels 

of the service contract. This dynamic nature of trust can be captured by the trust contract 

proposed by the TruSStReMark framework as indicated in Figure 4.8. For example, the 

BDU tuple of Response Time is computed as a reference to another level attribute (i.e., 

referring to QoS attribute) and placed as a part of trust contract according to an agreed 

Software Service (or System) Life-cycle 

|Requirements | Design | Development | Testing | Integration | Deployment|  

Software Service Specification  

(L0): General Level - Service type, cost, license                     

(L1): Syntactic Level - Interface details   

(L2): Behavioral Level Pre-Post-conditions               

(L3): Synchronization Level - Access Policies             

(L4): QoS Level - Different QoSs (e.g., Response-Time) 
 

New Level (L5): Trust Attributes (Partial Table) 

Version 1.1                        

Response-Time (30ms) (ref L4)  

 Internal View (1.0,0)  

 External View  (0.6,0.2,0.2) 

Version 1.2                        

Response -Time (30ms) (ref L4)  

 Internal View (0.9,0,0.1) 

 External View (0.85,0.05,0.1) 
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temporal aspect (e.g., versions). The calculation of the BDU tuples is done in both internal 

(i.e., developers) and external (i.e., users) perspectives with respective to that particular 

attribute of the specification. 

  

4.5.3 Benefits of Long term aggregation of trust attributes.  

As mentioned in the previous subsection, aggregation and monitoring of different trust 

attributes (related properties from Levels 0-4 of the service specification) provide the 

following benefits for the service selection and recommendation process. The trust 

aggregation process is general to be included in to any service representation and selection 

technique. Also, the aggregation process does not impose any restrictions on the software 

development or reviewing processes. It also does not alter the existing service specification 

details, however, it proposes to periodically update a separate trust contract based on the 

new evidences. The problems of over specifying and under specifying the trust are 

normalized in the long-run over time.  

The aggregation process uses the operators presented in Table 4-3. to combine trust 

values given to different evidences. However, these operators work best when they are 

presented with lot of evidences. Long-term monitoring of services should generate lot of 

evidences when the services are used by the general public (e.g., number of services 

reviews generated for a mobile app by the external users in a service marketplace is now 

considered as a big data aggregation problem). However, the problem with evidence based 

trust evaluation is over (or under) specifying of evidences. If the majority of the evidences 

are not over (or under) specified then the trust aggregation can be normalized by the other 

evidences by considering them as the outliers. For example, while aggregating the user 
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reviews of a service, if one reviewer is observing that the app does not last for 2 hours of 

battery life in his type of device (while all the others agree that the app works for more than 

2 hours), then that reviewer’s evaluation of trust becomes a clear outlier. However, there 

exists a small risk of considering a legitimate review as an outlier too.  

Table 4-3 Definitions of subjective logic operators and their aggregations  [23] [37] 

Operator Definition Aggregation  ( Given  B,D,U of p and q as 
Tp = [bp|dp| up]and  Tq =(bq|dq|uq) 

Conjunction Used to aggregate two 
opinions to reflect the 
conjunctive truth of both. 

Tp^q  = [bp^q|dp^q|up^q] where,   bp^q = bpbq    
dp^q = dp + dq - dpdq    and    up^q = bpuq + 
upbq + upuq 
 

Disjunction Used to aggregate two 
opinions to reflect the 
disjunctive truth of both. 

Tp˅q  = [bp˅q|dp˅q|up˅q] where,   bp˅q = bp + 
bq - bpbq    where dp˅q = dpdq   and    up˅q = 
dpuq + updq + upuq 

Consensus Used to combine many 
independent opinions 
about the same 
proposition into a single 
opinion. 

Let Tp and Tq be two opinions by agents p 
and q about the same proposition.    
TP,q ={b P,q, d P,q, u P,q } be the opinion such 
that b P,q = (bpuq+ bqup)/k  
d P,q = (dpuq+ dqup)/k    and  u P,q = (upuq)/EEEk 
where K = up + uq – upuq such that  k=0 

Recommen-
dation  

Used to transfer opinions 
about one  propositions 
from one evaluation to 
another 

Let p, q and be agents where Tp
q = [bp

q, 
dp

q, up
q] is P’s opinion bout Q’s 

recommendations. Tpq  be is Q’s opinion 
expressed in P recommendation 
Tpq  = [ bpq| dpq| upq] where,  bpq = bp

qbq 
dpq = bp

qdq   and  upq = dp
q+ up

q- bp
quq  

Negation Used to invert opinion 
keeping the ignorance 
component unchanged. 

T¬p = [b¬p|d¬p|u¬p] where  b¬p = dp  
d¬p = bp    and   u¬p = up  

Ordering Used to order opinions 
based on their strongest 
belief. 

IF  Tp and  Tq  have different (b + u)/(b + 
d + 2u) ratios  
THEN  RETURN opinion with greatest 
(b+u)/(b+d+2u) ratio 
ELSE  RETURN opinion with the least u 

 

 The important advantage of the trust aggregation process is that it keeps track of the 

behavior of the service with respective to users’ trustworthiness. For example, let us 

consider a service and its weekly collected external reviews (as evidences). Apart from the 
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overall trust aggregation from the beginning, weekly trust can also be independently 

calculated. If there is a sudden drop/increase of reviewers’ confidence in a particular week 

about the service, then an alert can be raised and evidences can be further evaluated. By 

doing this the TruSStReMark framework enables the ability to select the trustworthy 

service by the service selection process which matches the service requirements together 

with trust-based requirements. Although the service matches to the given functional and 

non-functional requirements indicated by the service requirements, that particular service 

may not be the one which is most valued by the external reviewers whom have the same 

requirements. Hence, long-term trust aggregation enables this improvement in service 

selection and recommendation algorithms to find the service which behaves according to 

all of the users’ requirements [89].  

This contract, as indicated earlier, is an aggregation of trust tuples associated with all 

artifacts generated during the service creation. Now, consider a partial multi-level 

specification of a Wi-Fi tracker service deployed in a distributed tracking environment as 

shown in Figure 4.9 which was presented in our previous work [89]. It indicates three types 

of attributes – component, QoS, and synchronization – with associated (B, D, U) tuples. 

For example, for the license attribute (which is a component attribute of Wi-Fi tracker), 

both views indicate same value of the (B, D, U) tuple – the value of the tuple being (1.0, 

0.0, 0.0). Such a consensus indicates that the evidence presented for that attribute shows 

there is no degree of disbelief or uncertainty associated with that attribute. In the case of 

the license attribute, it is expected that the developer’s documentation is the evidence and 

accepted by the external users. In contrast to this attribute, the QoS attribute (lag time) of 

the Wi-Fi tracker shows two significantly divergent opinions—the (B, D, U) tuple 
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indicated by the developer (shown as the internal view in Figure 4.9) does not match with 

the (B, D, U) tuple evaluated by the users. Figure 4.9 shows the trust associated with the 

synchronization attribute and that case is in between the two cases of license and lag-time 

attributes.  

 
Figure 4.9 Partial multi-level contract of a Wi-Fi service [89] 
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Figure 4.10 Wi-Fi Service behavior over time [89] 

 

 

 
Figure 4.11 Consensuses and disagreements of internal and external views [89] 
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As indicated earlier, the trust needs to be monitored over a period of time and 

necessitates the need to store history associated with a service. Figure 4.9 and Figure 4.10 

show the variation of the trust contract (and history) over time for the Wi-Fi tracker. The 

current version of the contract is 1.3 (Figure 4.10) and the user is interested in lag-time of 

the service. By looking at the service, the trust attributes for versions 1.2 and 1.3, the user 

can track the direction of movement of trustworthiness (i.e., convergence or divergence). 

As displayed in version 1.3 (Figure 4.10), developer’s view has reduced the values in the 

trust tuple, but at the same time, the reviewers have improved their view and that is evident 

in the higher value of the trust tuple. 

At a particular time instance, the aggregated values of the (B, D, U) tuples representing 

the internal and external views can be in a state of either agreement or disagreement (Figure 

4.11). If they are in agreement, it shows that both the developer and users have a very high 

confidence about the behavior of a particular service. On the other hand, there are many 

possible reasons (e.g., different interpretations of the evidences associated with trust 

attributes) that will result in the divergence of trust tuples indicating the internal and 

external views. In such cases, a developer may decide to present further evidence, or 

modify the service to provide a new set of evidences that may change the trust tuple value 

associated by the external uses. The proposed trust contract therefore provides an effective 

way to capture the trust associated with each attribute and provides an automatic way of 

determining the evolution of trust over a time period. 

In summary, the following are the identified strengths and benefits of the 

TruSStReMark framework’s ability to long-term monitor and aggregate the quantified 

trust-based attributes of services for the service selection and recommendation processes. 
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• The trust aggregation process is general and can be included into any service 

representation and selection technique.  

• The problems of over specifying and under specifying the trust are normalized in the 

long-run over time.  

• To track the trust progression and reason of trust variations over time of different views.  

• The ability to select trustworthy apps by the service selection process which matches 

the service requirements.  

 

4.6 Quantification and Specification of Trust for Apps 

An android marketplace is a location where the details about the apps related to 

portable devices are published. In this case study, TruSStReMark is experimented with a 

selected subset of service types from the Android Marketplace in relation to a trip planning 

system. The goal of this case study to show the effectiveness of the long-term aggregation 

and monitoring of the trust-related attributes. Any service in this marketplace has two 

views – internal (i.e., developer’s view) and external (i.e., user’s view). The former 

indicates the confidence that a creator has in the behavior of her service, while the latter 

depicts the first-hand experiences of users of that service.  

Therefore, the computation of the trustworthiness of a service must consider both these 

views.  These users act as reviewers when they express their views (e.g., text and numerical 

quantifications) in associated public forums (e.g., Software Marketplaces). We use the 

terms “users” and “reviewers” interchangeably. Due to the limited availability of internal 

evidences, mainly external reviews are considered as aggregating evidences. If available, 

the internal evidences are also used in the calculations of the internal view of trust. 
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However, it was not used as a long-term monitoring criteria, since the values are aggregated 

from a limited set of evidences as compared to external reviews of the service. Therefore, 

in this case study only external reviews available about these apps are considered. The 

selected service dataset includes 36204 apps and 1108343 reviews. We used a default value 

for the internal view of apps, since the internal evidences are not available. 

  

4.6.1 Case-study from an online marketplace 

The assumption for the scenario is that all the users are equipped with android capable 

devices and are connected over the network. Instantly, a group of users decide to plan a 

trip using apps available from the android marketplace. To speed up the planning process, 

they assign each member with different tasks related to planning (Figure 4.12) such as 

travelling (flights and rent a car), maps and navigation, weather and traffic, hotels and 

reservations and financial (gas, banks, etc.). 

 
Figure 4.12 Abstract scenario of trip planing collaboration using android devices and 

apps from the android marketplace. 
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The users need to select the best apps from the marketplace for their requirements and 

the trust (of the selected apps) play an important role in such scenario. If any of the apps 

that they have chosen fail to provide what the users require, then the plan would have to be 

redone. Although the developers mention that they provide reliable apps as shown in their 

specifications, here are some examples which the apps may fail to meet the trust 

requirements of this set of users (Figure 4.12). By showing routes via currently overbooked 

flights, by showing outdated location information from maps with non-existing point of 

interests (hotels, banks, gas stations, restaurants, etc.) and by forecasting inaccurate 

weather and traffic. 

In this kind of scenario, the only way the users can be confident about a service is by 

accurately matching and selecting apps according to their trust requirements (in addition 

to their functional and non-functional requirements) based on the evidences provided by 

others who were in the same situation before. Therefore, the results described in the 

following subsection show how TruSStReMark can improve the service monitoring 

process by performing long term trust monitoring and aggregation of reviews. 

 

4.6.2 Analyses of Data Aggregation and Presentation 

The TruSStReMark framework continuously monitors and aggregates trust of a 

selected sub-set of apps from the Android marketplace. These apps are selected as the 

possible candidates for the scenario mentioned above. When the data i.e., service 

descriptions and reviews) is loaded to the TruSStReMark, the goal is to track the 

progression of trust for each service, based on specific temporal intervals (i.e., versions, 

weeks) and select proper set of apps.  
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Although, the data we extracted from the marketplace is publically available for 

everybody to see, due to conflicts of interest and necessity to preserve privacy, we had to 

censor out (i.e., distort) some of the information (i.e., apps names and personal details) 

shown in the following set of images. When a service query is submitted, TruSStReMark 

displays a list of possible instances (for each type of service needed, e.g., travel apps).  

 

Figure 4.13 Apps for a type of service are ready for evaluation of their trust (with 
referencing the scenario in Figure 4.12). 

 

Figure 4.13 displays a screenshot of TruSStReMark which provides a list of apps (for 

a particular type of service needed for the scenario presented in Figure 4.12) after matching 

their other requirements. This list is used to evaluate trust of interested apps by the users. 

From this page, the users can select a service either by evaluating them based on the table 

details or decide to select interested apps after further evaluating them.  

From the external reviews TruSStReMark can calculate trustworthiness of each 

service based on associated evidences and also can track the progression of trust. Figure 

4.14 presents a screenshot of how the trust of a selected service (from the list of apps in 

Figure 4.13) can be aggregated based on the external reviews. In each row, the table 
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displays each review along with their calculated trust using the sample aggregation 

algorithm presented in Figure 4.15.  

 

Figure 4.14 Week by Week Monitoring of Trust using B,D,U based evidences 
 

 

 

Figure 4.15 Structure of the algorithm used for review aggregation using SL  
 

 

The resulted value of trust (B,D,U tuple) are displayed graphically by using subjective 

logic-based BDU triangle. Each edge of the triage represents each extreme view of trust 

(Green edge – [1, 0, 0], Red edge – [0, 1, 0], Blue edge – [0, 0, 1]) and other area inside 

the triangle represents any value between them.Finally, the total trust aggregation is 

External View: BDU_Aggregation_Algorithm 
Input: User reviews of a service (optional date range) 
Output: Aggregated trust value of the service (B, D, U) 
('AvgRating' out of 5)%  
For Each REVIEW  

(('ReviewDate'-'ServiceFirstAvailableDate') /  
('Today'- 'ServiceFirstAvailableDate'))%  

Evidence based B adjustment %   
Evidence based D adjustment % 
Evidence based U adjustment % 
Recommendation Adjustment % 

[Symbol % indicates when the specific parameter value is applied as an adjustment 
based on a pre-agreed weightage] 
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calculated using on the consensus operator shown in Table 4-3 and is displayed using both 

numerical and graphical representations. When a large set of independent opinions are 

available, then the consensus operator can be used to aggregate even conflicting opinions 

to make an overall judgment.  

Figure 4.15 presents the algorithm used to aggregate trust based on external reviews 

about a service. Based on individual service attributes which are present in user reviews, 

the B,D,U adjustments are calculated. For example, as displayed in Figure 4.15, starting 

from total trustworthiness [1,0,0], first the trust is adjust based on the apps’ average user 

star rating (based on previously agreed importance of the average rating as a weightage).  

 

Figure 4.16 Total trustworthiness of a service is presented using two operators 
(conjunction and consensus from Table 4-3) [88] 

 

The evaluators can include any number of evaluation criteria either at the service level 

or at the reviews level. After the service level trust aggregation, next the trust is adjusted 

based on each review. The novelty of the review is calculated and depending of the value 

of that the impact of this review is determined. Calculating the impact of the textual review 

can be based on simple techniques (such as keyword counting) or complex as theory of 

information retrieval domain (such as natural language processing techniques, later which 
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TruSStReMark adopted). We did not specify a particular technique to determine the impact 

of a review with the algorithm initially. Hence, this approach is general enough to use any 

suitable technique (form the domain of machine learning and information retrieval).  

Figure 4.16 presents a screen capture of TruSStReMark indicating the computed trust 

value of a selected service. We use two methods for calculating the total trustworthiness of 

a service. The consensus operator is preferred when the evaluated views fall within a range. 

Otherwise the conjunction operator is preferred. Final aggregation values are displayed 

using both numerical and graphical representations. We also use a BDU triangle which is 

similar to the visual representation used by Jøsang et al. in [23]. If the information related 

to internal view is available, it also can be calculated using similar algorithm. The 

important thing to note is that the subjective logic operators (from Table 4-3) can be used 

to aggregate the evidences to evaluate trust depending on the situation. For example, again 

Figure 4.16 presents two ways of calculating the total trustworthiness of a service by using 

different operators to aggregate the values of internal and external views of trust.  

Figure 4.17 presents a screen capture from the trust progression page of the framework 

which provides the weekly summarized trust of a selected service. Using the BDU triangles 

sorted by weeks, this page graphically shows fluctuations of the trust (of a service) based 

on the service behavior in the past. The knowledge gained by observing this progression 

helps to make important decisions during service ranking and selection. For example, week 

2 of the service indicates an abnormal value of trust compared to other weeks. If the users 

encounter such behavior, then they can further inspect the events related that particular 

time period of the service to conclude the causes. For example, in this case, the service 
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released an updated version during that week and the users (who upgraded) experienced 

major problems.  

 

Figure 4.17 Week by Week Monitoring of Trust using B,D,U aggregations from 
evidences available within that time period 

 

Then we were able to find out that the issues are due to presence of newly promoted 

user interfaces. However, the developers acted quickly and released another version within 

a week and was able to solve the previously reported issues which degrades the trust of the 

service. Therefore, within the next week (the week 3) the posted reviews got back to within 

the normal range of trust (tracked by the framework during the history of the service). 

Considering the types of apps needed for the abovementioned case study, the users could 

avoid a service with such issues by after selecting their service using this framework and 

benefit by having more confidence. Because within the framework selected set of apps, it 

is very unlikely that there will be any new release related issues (having seen the history 

and trust progression of these apps) during their time of planned vacation.  

A reviewer may introduce apps to other reviewers. For example, a reviewer may ask 

their collaborators about a particular type of service and receive a set of choices. This 

situation requires the use of the recommendation operator to transfer an opinion (as 

indicated by the corresponding (B, D, U) tuple) about the service from one reviewer to 

another [89]. The asking reviewer can then use the transferred opinion in the matching 

process. If many conflicting opinions are present then the negation operator (from Table 
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4-3) can be used to negate of one or more opinions about another opinion by inverting 

while keeping the ignorance component unchanged [89]. For example, a user requests a 

service with response time 10 msec or less (reqi). Some reviewers, however, may express 

their confidence in (B, D, U) for the response time greater than 10 msec (~reqj). Negating 

(~) later (~reqj) reviews and aggregating with the matching reviews (reqi) may provide a 

better confidence with no change in the ignorance part of the tuple. 

The experience gained from this case study gave us an initial empirical validation of 

the TruSStReMark framework and it provided the foundation for next steps of 

improvements. There are modifications necessary to the prevalent trust-based service 

selection and recommendation algorithms to include trust-based matching. These 

contributions and modifications present in TruSStReMark framework are presented in the 

next Chapter.  
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CHAPTER 5. TRUST-BASED SELECTION AND RECOMMENDATION 

The work presented here is based on our previous publications [88] [89]. The 

TruSStReMark framework focuses on improving algorithms that perform trustworthy 

service representation, selection and recommendation in the context of service 

marketplaces. The main goal of the framework is to facilitate service reuse and trustworthy 

integration of software systems. This is achieved by identifying the complete spectrum of 

trust of apps at the time of service selection and recommendation. For that, it tracks and 

records the fluctuations of both the apps and their environment using information from 

customer satisfaction, robust updates and stable new releases. This additional information 

collected by the framework improves the selection and recommendation processes such 

that users can make decisions based on the trustworthiness and the reputation of the apps. 

Prevalent approaches, which are listed in Subsections 2.3 and 2.4, of product-based 

ranking and recommendation do not consider information about items beyond attribute-

value pairs. For example, one widely accepted technique of ranking, selection and 

recommendation of items is item-item Collaborative Filtering (CBF). This technique is 

based on the concept “similar users buy similar items”. It does not consider item details 

and algorithmic processing on a large (typically very sparse) item-user matrix. Another 

accepted technique is Content-based Filtering (CBF) for ranking, selection and 

recommendation. Although it considers item details, CBF first models the item details as 

quantifiable attribute-value pairs, which may not be possible for every item details.
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The final goal of these two techniques (or their hybrid model) is to rank and 

recommend items using a similarity-function such as cosine similarity. Compared to a 

product, reusable software-based items (such as, online apps) are hard to describe using a 

set of attribute-value pairs or using a user-item relationships. Therefore, it is challenging 

to apply product based ranking and recommendation techniques directly to software. 

Moreover, the service providers create apps and publish service metadata (more broadly a 

service specification) that can be used to selection and recommendation of apps. However, 

the important questions for service consumers are; (a) Does the service always delivers 

what is described in its specifications? and (b) Is the service selection mechanism capable 

of providing the consumers with details required to evaluate the trustworthiness of the 

service?  

 

5.1 Selection and Recommendation of Trust for Apps 

During the matching phase, the service details available in the specification are 

matched with user requirements. The matching scheme depends on the structure of the 

specification ranging from simple attribute-based matching to more complex multi-level 

matching. Our previous work has performed experiments on how Multi-level Matching 

can be performed on selection software apps with varying operators at different levels  [70],  

[71], [72]. Analysis of different schemes that match both functional and QoS features have 

been discussed in background section (Subsection 3.1) of this dissertation, which is related 

to our previous publications ( [70], [71], [72]). Most prevalent service specifications do not 

include a comprehensive trust contract and, do not consider a trust contract and associated 

operators needed for matching. In contrast, the approach proposed in this dissertation 



www.manaraa.com

110 
 

mainly focuses on trust contracts in service selection and recommendations. In the next 

sections, we present our framework named TruSStReMark.  

Service selection is an expensive and time consuming process, especially, when the 

search space is very large. Therefore, many prevalent methods use heuristic-based 

approaches to initially prune the search space. Service selection algorithms proposed in 

most prevalent approaches can be divided in to two phases; the off-line phase and the on-

line phase (as described in Figure 5.1).  

 

Figure 5.1 Structure of a service selection (and recommendation) algorithm with 
differentiation of on-line and off-line phases 

 

The offline phase performs the pre-processing of the review datasets. This pre-

processing phase is a time consuming process and involves periodic modifications to the 

whole collection of service specifications. It orders and categorizes existing apps. Different 

techniques such as ordering, indexing, clustering and heuristic based methods are used. In 

this phase, new knowledge about the apps (such as, how confirmed users have used this 

service already and what are the most important and most discussed features of the service) 

is discovered and subsequently represented and stored in a suitable format. This process 

makes the knowledge quickly accessible for the on-line matching phase. For example, 

within a service cluster, an ontology can be created to improve the accuracy of the 

Prevalent Service Selection Algorithms 
Input: Service query  
Output: Ordered list of matching services.  
 

//Off-Line Phase (periodically updated) 
- Pre-Processing of a large collection of dataset 

 

//On-line Phase (executed for each query) 
- Matching service attributes against requirements  
- Perform Selection and Recommendations 
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semantics of matching of apps. In contrast, the matching phase quickly selects a subset of 

apps and matches the input requirements to find suitable apps. However, the two important 

questions (a), (b) from the previous section are left as afterthoughts during this phase, 

which we consider as a major drawback. 

  

5.1.1 Structure of Selection and Recommendation Algorithms 

One alternative solution is the option given to the users to include a numerical rating 

such as average star ratings (e.g., out of 5 stars). This method is now commonly available 

to service users in service marketplaces. However, the star rating system is also similar to 

having a single QoS attribute as the trust of the service. It is hard to associate a common 

number that encompasses all aspects of a service by a user who may or may not have used 

all the aspects of the service. Therefore, the star rating has limited use in answering the 

questions (a), and (b). Therefore, there exists a need for a new way to long-term aggregate 

and monitor the trust of a service.  

The TruSStReMark framework answers the questions (a), and (b) using augmented 

trust-based specification and using augmented selection and recommendation algorithms. 

These modifications are highlighted in Figure 5.2. When compared with Figure 5.1, it is 

apparent that additional information helps to improve the quality of the results of service 

selection and recommendation algorithms. Updated service specifications include a trust 

contract that provides the capability to handle trust requirements of the service queries. 

These queries can request about the trust requirements associated with either one prominent 

attribute (such as the battery life) or multiple attributes. 
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The Off-line phase of the service selection process periodically collects the evidence 

of trust attributes published by the service specification. The trust aggregation can be 

performed hourly or daily, as new evidences arrives or as new versions arrives. For 

example, let us consider a partial service specification as shown in Figure 5.3.  

 

Figure 5.2 Modified structure of a service selection algorithm with provisions for 
aggregation of trust attributes and trust related matching semantics [87] 

 

 

 

Figure 5.3 Trust contract with aggregated contract versioning [87] 
 

 

Figure 5.3 indicates the trust representation and aggregation with service versioning 

and dynamic updates (i.e., including changes proposed to the service specification as 

indicated in Figure 5.2). Here, the timeframe of trust aggregation is based on the version 

of the service. For simplicity, only two parameters of the trust contract are shown; License 

Modified Service Selection Algorithm (modifications*) 
Input: Service query (Including trust requirements*) 
Output: Ordered list of matching services.  
        -Optional ordering according to the trustworthiness* 
 
//Off-Line Phase (periodically updated) 
- Pre-Processing of a large collection of dataset 
- Periodically aggregate trust attributes * 

 
//On-line Phase (executed for each query) 
- Trust related matching semantics and operators * 
- Matching service attributes against requirements  

  

Modified_Service_Specification*  
//Level L0 -L4   (Skip Display) 
//*New Level (L5): Trust Attributes (Partial Table) 

Version 1.1                        
License – GPL (ref L0)  
 IV (1.0,0) | XV (1,0,0) 
Battery Life (2hr) (ref L4)  
 IV (1.0,0) | XV (0.5,0.4,0.1) 
 

Version 1.2                        
License – GPL (ref L0)  
 IV (1.0,0) | EV (1,0,0) 
Battery Life (2hr) (ref L4)  
 IV (0.9,0,0.1) | XV (0.8,0.1,0.1) 
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(From General Level) and Battery Life (Non-functional Level). Version 1.1 of the license 

attribute indicates the same (B, D, U) tuple for both views (Internal View-IV and External 

View-EV). This indicates that the evidences (e.g., developer documentation) presented for 

both the developers and external users’ views are similar (i.e., no conflicting opinions 

exists). However, there exists a significant mismatch between the evidence aggregated for 

the battery life attribute, and thus shows two conflicting opinions. As indicated earlier, trust 

needs to be monitored over a period of time and requires storage different evidences of the 

history associated with a service’s attributes. By investigating the trust attributes for 

versions 1.1 and 1.2, the user can track the trend of trustworthiness (i.e., in agreement, in 

convergence, or in divergence) [87].  

For example, in Figure 5.3 the developer’s view of battery life in the version 1.2 has 

reduced as per its trust tuple. At the same time, the reviewers have improved their view as 

per the higher value of their aggregated trust tuple. Both the IV and XV can include 

optional notes for each other, in this case it is noted ‘fixed existing energy related issues 

and 90% of the test-cases succeed’ and ‘noted battery life improvements’ [87]. Having 

these trust related aggregations collected over a period of time as part of a trust contract 

provides additional knowledge, which can be used during service selection. Using this 

modified specification of the trust contract the TruSStReMark framework provides 

improvement to the algorithm that allow an efficient and trusted software service search, 

ranking of selection and recommendation in the context of a typical software marketplace. 

The goal is to improve the confidence associated with the service outcomes, obtained from 

software marketplaces, for any user query. Such confidence will eliminate the ‘trial-and-
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error’ situations that many users have to go through, before they finalize a particular 

software service for their needs.  

 The calculation of confidence is based on a comprehensive analysis of external 

evidences available as textual reviews of software apps. These reviews are aggregated on 

a day-by-day basis from service marketplaces. The volume of these reviews for a given 

service, increases as the number of service users increases, necessitating an automatic big 

data analysis. In order to reduce the associated computational overhead, TruSStReMark 

processes these reviews offline (day-by-day in our current setup or it can be hour-by-hour 

if resources are available) within a given timeframe using Natural Language Processing 

(NLP) techniques such as the Sentiment Analysis (SA), and Theory of Belief techniques 

such as Subjective Logic (SL). The resulting numerical values are found to be sufficient 

for the future calculations. 

 Hence, when new reviews arrive, there is no need to go back and process them again, 

because existing operators available in SL enable us to merge new and old results as 

required. For example, SA calculates general sentiments of a document for all the named 

entities. To calculate the confidence of selected set of named entities, SA needs different 

documents, which only include parts of the document containing relevant information. If 

the requirement is to calculate confidence about a QoS expressed by the users from the 

textual reviews (e.g., item descriptions and user reviews), then the SA needs to maintain 

documents about each interested named entity (e.g., QoS). Furthermore, SA adds new 

information as it arrives and recalculate sentiments. However, unlike SL, SA does not 

provide a technique to calculate confidence based on conjunction of opinions or consensus 

of opinions. 
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5.1.2 TruSStReMark framework applied to marketplaces  

 In the context of a software marketplace, the search and selection of a software service 

is always performed using a given set of requirements (especially, focusing on the QoS 

features). Therefore, the underlying assumption in this process is that apps are reusable or 

can always be replaced after their installation when users’ requirements change. The open 

culture of these marketplaces allows many alternatives for a given type of service with the 

hope that one instance could be replaced by its possibly superior alternative, when such an 

alternative becomes available in the near future. For example, if a better music playlist 

manager becomes available in the future then users tend to replace the existing playlist 

application with this new one while keeping their profile intact (e.g., in the Android 

Marketplace, users now consider Spotify as an alternative to Pandora).  

While considering such replaceability requirements, users are interested in knowing 

and comparing different features and the stability of the QoS of various alternatives. In 

future software marketplaces, it is fair to assume the existence of the following two types 

of scenarios: i) users who use or replace the existing apps as individual entities (i.e., they 

do not attempt to relate or compose apps together, and ii) users who select apps with the 

purpose of integrating them with other apps to create complex systems. The first scenario 

is similar to searching for physical and tangible products from a marketplace such as 

Amazon. However, as indicated earlier, the dimensions of a typical physical product and 

the dimensions of a software service are distinctly different. For example, most product 

descriptions consider physical features (such as height, weight, length, etc.), along with 

their measurements. The confidence associated with these measurements is certain and 

immutable over time. In contrast, software apps consist of more complex features such as 
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different QoS values, and the confidence associated with these measurements are a function 

of execution the environment and time.  

In the second scenario, the selection of a software service happens because that service 

needs to operate as a piece of a larger, and perhaps, distributed system. For example, a user 

who has obtained word processing software, such as MS Word, from the Windows Desktop 

Application Store can benefit from a recommendation related to suitable add-ons. 

Microsoft lists over 150 apps and add-ons for MS Word, and it is a challenge for such a 

user to discover the best add-ons with her particular version of Microsoft Word.  If apps 

are to interact with other apps, a simple user-service matrix, incorporated by prevalent 

approaches to suggest recommendations will fall short, because by using only information 

about the user-service numerical relationship, the algorithm could not infer only from the 

user ratings of that service the version compatibility or confidence of the users about a 

specific QoS of that service.  

In such cases, in addition to the replaceability, the concept of compatibility needs to be 

included during the search and recommendation process. To provide better 

recommendations, in both of these cases, additional levels of information about the trust of 

a software service, especially in the context of its dynamic nature or the QoS features, 

needs to be analysed. TruSStReMark performs this extra analysis using users’ reviews from 

the marketplaces. The TruSStReMark framework augments and enhances the two 

prevalent approaches (i.e., Content-based Filtering (CBF) and Collaborative Filtering 

(CLF) which are described in CHAPTER 3).  
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5.1.3 Conversion of SA to SL 

As indicated earlier, the TruSStReMark framework improves confidence while selecting 

and recommending software apps by aggregating external evidences available as textual 

reviews. SL provides the necessary operators to aggregate different opinions about a 

service QoS from different users depending on the situation. As described in the previous 

Chapter, Table 4-3 indicates the definitions of conjunction, consensus and ordering 

operators from SL that are used in TruSStReMark. These evidences are aggregated by 

passing the identified sentences which describe a particular QoS of a service from user 

reviews. The aggregation and quantification uses SA techniques related to opinion mining 

strategies. As a part of SA, opinion mining refers to the use of NLP techniques to analyze 

textual content and use computational linguistics criteria to identify and extract subjective 

and polarity information. For example, the sentiment of a textual sentence is expressed by 

SA using a numerical pair of polarization (i.e., the confidence about an identified named 

entity) with a value between -1 and +1 and subjectivity (i.e., the weight of the expressed 

polarization) with a value between 0 and +1. In the analysis of textual reviews, we have 

used a publically available text processing tool called the TextBlob [78] for the NLP-based 

sentiment analysis. In our approach, we pass textual reviews from users to calculate the 

sentiment expressed about a particular QoS property of a software service.  

Table 5-1 presents four sample sentiments calculated from associated review sentences. 

The TruSStReMark identifies a set of named entities for users from storing their queries 

(i.e., which QoS features are important to them). These named entities for apps can be 

calculated from the keywords, their description, and from user reviews. Given that, and 

using TextBlob library [78], the TruSStReMark calculates the sentiments of user reviews.  
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Table 5-1 General and QoS sentiments and relative scores from reviews [91] [92] 

 

The positive polarity of SA is a measure of belief in the textual evidence. Similarly, 

the negative polarity is a measure of disbelief. Then subjectivity is the indication of 

certainty when high and uncertainty when low. Therefore, we adapt the following 

technique for conversion from SA to SL.  

Table 5-2 Conversion from Sentiments (Subjectivity, Polarity) tuples to < Belief, 
Disbelief, Uncertainty > tuples [92] 

(P,S) <B,D,U>  (P,S) <B,D,U> 
(+1,1) <1,0,0>  (0,0) <undefined> 

(+0.75,0.25) <0.75,0,0.25>  (-0.25,0.25) <0,0.25,0.75> 
(+0.5,0.5) <0.5,0,0.5>  (-0.5,0.5) <0,0.5,0.5> 

(+0.25,0.25) <0.25,0,0.75>  (-0.75,0.25) <0,0.75,0.25> 
(0,0) <undefined>  (-1,1) <0,1,0> 

 
 

The following discussion describes the steps followed for converting the identified 

QoS using textual sentiments (i.e., 2 dimensions, [polarity [-1,1],subjectivity[0,1]) to 

Subjective Logic-based B,D,U tuples (i.e., 3 dimensions (Belief[0,1], Disbelief[0,1], 

Uncertainty[0,1]). The boundary cases in this conversion process are computed as listed in 

Table 5-2. The in-between values are equally weighted and divided among the relevant 

entries. The following boundary cases and the remaining cases are calculated by averaging 

and interpolation using a linear model as described below.  

Sample Review Sentences 

 

Named 

Entity 

Sentiment Analysis 

Polarity Subjectivity 

Nice, Good Work.  General +0.700 0.875 

Very bad.  General -0.350 0.600 

I love this apps’ UI with large text and 

figures.   

User 

Interface  

+0.357 0.514 

I hate this app, it drains the battery so fast 

and slows down my device.  

 Resources 

Usage  

-0.252 0.596 
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Let A be a matrix in which each row is a case of P, S combination, and the first column is 

P, and the second column is S. For example, from the table, A should be represented in 

matrix format as indicated in Table 5-3. 

Table 5-3 Matrix representation of the SSA to SL conversion 

A = [1,      1 
        0.75, 0.25 
        0.5,   0.5 
        0.25, 0.25 
       -0.25, 0.25 
       -0.5,   0.5 
       -0.75, 0.25 
       -1,      1] 

Y = [1,      0,      0 
        0.75, 0,      0.25 
        0.5,   0,      0.5 
        0.25, 0,      0.75 
        0,      0.25, 0.75 
        0,      0.5,   0.5 
        0,      0.75, 0.25 
        0,      1,      0] 

 

 

Let Y be a matrix in which each row is a corresponding case of B, D, U combination, and 

the 1st column is B, 2nd column is D and the 3rd column is U. From Table 5-3, Y should 

be (we just need B and D in Y since B, D, U are linearly dependent such that B+D=1-U). 

Then, the problem is defined as to convert from A to B. Assume the conversion follows 

the following linear form: 

A * X = Y, 

where X is the conversion matrix that the solutions is  looking for. We formulate the 

solution as a multivariate linear regression [91] [92]. Next, the calculation of  X is 

obtained by solving the following optimization problem: 

min_X  || A * X - Y ||^2_F 

s.t.,      A * X >= 0 

Once X is calculated, then we can use it to convert a new (P, S) combination (i.e., a), via 

the following equation: 

BDU values = a * X (that is, y = a * X is the converted BDU values) 
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Since this result is not necessarily non-negative (as b,d,u values are probabilities) , a 

normalization method needed to be applied and the TruSStReMark framework uses the 

following normalization:  

  y = y / sum(y) (i.e., y normalize y by dividing y by the sum of its values) 

This was chosen to normalize the dominance of any single value and get the ranges 

within the value ranges of b,d, and u [92]. Therefore, the results should be the normalized 

y representing the BDU probabilities. 

Starting from the identified boundary samples, which are listed in Table 5-3, all the 

other sentiment values computed by the framework are converted to subjective logic tuples 

using the model described above.  

 

5.1.4 Initial case-study on Trust-based Recommendation 

TruSStReMark is initially used to experiment with the initial versions of the trust-

based recommendation algorithms [93] (i.e., NP-Tr-Rec and P-Tr-Rec as indicated in 

Figure 5.4 and Figure 5.5). We have developed two different techniques. They are: 1) one 

technique does not take user profile information of the reviewer into the calculations (NP-

Tr-Rec); and 2) Other techniques does use the reviewers’ profiles for the trust-based service 

recommendations (P-Tr-Rec).  

Figure 5.4 presents the basic structure of the first technique (i.e., algorithm which is 

not based on reviwers’ profiles NP-Tr-Rec) and Figure 5.5 presents the basic structure of 

the profile-based algorithm (P-Tr-Rec). Since, it’s profiled, the (P-Tr-Rec) uses the cosine 

similarity to calculate correlations to compare both the traditional star rating-based 

recommendations and the trust-based recommendations. The first method is analyzed by 
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ordering the output of NP-Tr-Rec algorithm by ranks of the apps and the second method is 

analyzed using percentage error by ‘leave-one-out’ predictions of similarity matrices 

resulted by P-Tr-Rec algorithm. 

 

Figure 5.4 Non-Profiled Trust-based Recommendation (NP-Tr-Rec) [91] 
 

 

Figure 5.5 Profiled Trust-based recommendation (P-Tr-Rec) [91] 

NP-Tr-Rec-Algorithm 
Input: Reviews of services (or Apps) (Star Ratings and Textual Narratives) 

For Each SERVICE (Rs as Rating, S[] as Feature Sentiments Array){ 

      For Each REVIEW (R as Star Rating, T as Text)(1 to N)   { 

          Rs = Rs + R // Add Values; Nc = Nc +1 // Review Count 

          For each FEATURE in S[] { 

              Calculate SENTIMENT of T (Polarity, Subjectivity) 

              Calculate W - TIME-SENSITIVITY of T (Range 0 to 1) 

    ( ('ReviewDate'-'ServiceFirstAvailableDate') /  

      ('Today'- 'ServiceFirstAvailableDate') ) 

              Update S[i](Pi,Si)  (with + or – Adjustments) 

                     Based on current P, S subject to weights of W and Nc 

     Calculate Average Star Rating (RA = Rs / N) 

Output:  RA (Range (0 to 5)), S[] (Each Entry Range (-1 to +1)) 

 

 

P-Tr-Rec -Algorithm 
Input: Reviews of services (or Apps) 

 (Star Ratings and Textual Narratives) 
 

For Every REVIWER (i and j) 

   Calculate Two COSINE Similarity Matrices (SM1 and SM2)        

       Each based on the vales from  

        - (Star Rating) REVIEWER-APP vectors for i and j  

        - (Sentiment of App UI) REVIEWER-APP vectors for i and j  

If two users are A and B :   For each common rating (r)   

The COSINE Similarity = ( (Ʃ Ar * Br) / (|| A || * | |B ||) )  

   Where || A || = ( Ʃ ( Ar )2 )0.5 
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As a preliminary study, we evaluated the review data of a subset of Android 

marketplace based apps (i.e., most commonly known as apps) in relation to apps domain. 

The randomly selected dataset includes 79648 apps (which were considered as individual 

software apps) and 2389446 reviews. In this dataset, the most common categories of apps 

are Notifications (Weather and Traffic), Reservations (Flight and Rental Car), Navigation 

(Maps and Directions), Entertainment (Games and Music) and News (Papers and 

Magazines). These external textual reviews about these apps are considered for the trust-

based recommendations against the traditional star rating-based recommendations (which 

we also calculated to validate from already available data in the Marketplace). The 

automatic spelling correction functionality of the TextBlob is used before parsing available 

reviews. Both the abovementioned (described in Figure 5.4 and Figure 5.5) approaches 

were evaluated by passing the dataset assuming ‘the need for a weather service’ as the 

explicit query. The execution environment was made up of Java and Python running on a 

machine containing Windows 8.0 (64-bitOS), 8 GB RAM, and Intel9 3.10 Gz processor.  

For these experiments a subset of weather forecasting apps was chosen, which 

includes top five weather apps (i.e., AccuWeather, WeatherBug, AndroidWeather, 

YahooWeather, and Weather.com). The traditional way is to rank these apps by average 

star rating with manual inspection and optional readings of textual narratives.  Following 

sub-sections describe the analysis of the results. For the sake of preserving the privacy of 

the apps and the reviewers; we have anonymized details during the following discussion. 

 (1) Trust-based Recommendation (Non-profiled) without timing constraints: Table 

5-4 indicates the results of executing the NP-Tr-Rec algorithm on apps related to the 

weather forecasting domain.  
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Table 5-4 NP-Tr-Rec results for top-5 weather apps [91] 

 Tradition Ranking 
based on RA(0 to 5) 

Trust-based Ranking based on 
Sentiment Scores of S[] between (-1 to +1) 

Service Star Rating 
 (RAValue | Rank) 

User Interface     
(S[1]Value | Rank) 

Battery Life 
 (S[2]Value | Rank) 

App 1 4.3 4 +0.75 1 +0.36 2 

App 2 4.4 3 +0.68 2 +0.42 1 

App 3 4.4 2 +0.46 4 +0.32 3 

App 4 4.5 1 +0.51 3 +0.30 4 

App 5 4.2 5 +0.27 5 +0.27 5 
 

 

In the Table 5-4, the apps are ranked according to both RA and S [User Interface, 

Battery Life] (from Figure 5.4), which correspond to traditional and trust-based 

recommendations. These results are calculated by parsing reviews and each of these service 

has around 300,000 star ratings and 50,000 textual reviews. However, this is not surprising 

as everybody who rates an service does not publish comments and we observed that the 

ratio of comments/ratings is around 1/5.  

The ranks obtained via the star rating and via our algorithm are different for each 

Service except for the Service5. The low ranking of the Service5, correctly computed by 

both the rating schemes, is attributed to the presence of many negative reviews. The 

Sentiment Scores (i.e., output values S[]) for all the apps are positive, which indicates that 

a majority of the reviews are positive about the UI and battery life of these apps.  If we 

consider only the average star ratings of all these five apps, as a product-based 

recommender would do, we find that there is hardly any difference (of 0.3 where 4.5 being 

the highest rating and 4.2 being the lowest rating) between these five apps. A similar pattern 

is observed with other categories of apps which clearly highlight the fact that an average 

star rating does not accurately reflect the trust about an service. Thus, require a better 
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recommendation technique.  NP-Tr-Rec address this deficiency by providing a rank based 

on various features of Apps as reflected in the narratives of the reviewers. Considering the 

S[] values in the Table 5-4, it is clear that Service1 and Service2 are ranked higher when 

compared with other apps. However, these two apps are ranked relatively lower according 

to the average star rating-based rank. Therefore, our approach (NP-Tr-Rec) provides a 

better ranking that will help the users while selecting apps to their preferences from 

available choices in a marketplace.  

 

(2) Trust-based Recommendation (Non-profiled) with timing constraints: Results 

presented in Table 5-5 are obtained by enforcing a pre-defined and arbitrarily selected 

cutoff time (60 sec) in the NP-Tr-Rec technique while processing the reviews. The cutoff 

time selects only the recent reviews and hence, indicates how the new users react to the 

apps. Both the star ratings and the S [] values are affected by this time limit, but we were 

not able to draw significant insights by comparing these results with the results shown in 

Table 5-4. We concluded that further investigations are needed to evaluate and identify an 

appropriate time interval that can be used to limit such computations.  

Table 5-5 Results from Table 3 with timing constraints [91] 
Service Tradition Ranking (RA) Trust-based Ranking (S[]) 

Star Rating User Interface Battery Life 
App 1 4.6 +0.52 +0.64 
App 2 4.1 +0.35 +0.22 
App 3 4.8 +0.28 +0.40 
App 4 4.5 +0.74 +0.16 
App 5 4.0 -0.16 -0.24 

 

Although the marketplace encourages the reviewers to show their identity, which is 

linked to their email accounts, some reviewers choose not to reveal their identity. However, 

as we observed, the percentage of number of anonymous reviews is less than 10% of the 
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reviews. This leads to an additional investigation wherein the ratings of the reviewers are 

also considered as a parameter while ranking apps.  From the selected review dataset of the 

weather domain, we identified the top 1000 reviewers by counting the number of different 

reviews published by them. The ranking analysis was then limited to the reviews from these 

reviewers. A highly sparse matrix (as a data table) is populated with the identified 

reviewers on one side and the apps that they have reviewed on the other side. Each data 

point corresponding to a cell in this sparse matrix contains information about reviewer’s 

star rating and corresponding trust scores (i.e., sentiments of the UI feature) calculated from 

their textual reviews. These calculations are based on the approach described by Figure 5.5. 

As a preliminary effort, in this experiment, we considered only the sentiments about the UI 

of the service. Due to the privacy obligations, again, the identities of the reviewers are 

masked in the Table 5-6.  

Table 5-6  Percentage error calculations of P-Tr-Rec results [91] 
Reviewer 
(Service) 

Traditional Star Rating Trust-based Sentiment of UI 

Prediced Actual %E Predicted Actual %E 

R1 (App 1) 3.91 4.00 3% +0.76 +0.82 7% 
R2 (App 2) 4.86 5.00 2% +0.66 +0.71 7% 
R3  (App 5) 2.10 2.50 35% -0.58 -0.46 30% 

 

Table 5-6 indicates the partial results of executing the P-Tr-Rec approach on the 

selected dataset. We indicate only 3 reviewers and 3 apps in the above table. In this 

technique, we compute the cosine similarity measure between the reviewers and use that 

in the ranking process. To assess the validity of the technique, we performed leave-one-out 

predictions – i.e., selecting a top reviewer who has review about a particular service already 

(that is the actual value in Table 5-6) and predict the values of star rating and UI sentiment 

that this reviewer may create based on the correlation matrices with other similar reviewers. 
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To predict the values that the “left out reviewer” may assign to an service, we use the 

ratings from the top-20 most correlated reviewers who have rated the same service. Once 

the prediction for the “left-out” reviewer is computed we then compare, by calculating the 

percentage error (%E) the prediction with the actual rating given by that reviewer. As 

indicated in the Table 5-6, we are able to predict, fairly accurately, for the first two 

reviewers. However, in the case of the last reviewer, our predictions deviate a lot from the 

actual ratings. Further manual analysis of this case revealed that, when the sentiments are 

negative, the percentage error values are high compared to positive sentiments. We think a 

possible reason for this is the typical nature of the reviews for top ranked apps (i.e., the 

small size of the available negative reviews (~40000) compared to the positive reviews 

(~300000)). Again, this suggests further extensive investigations are needed to consider 

this particular technique. 

The experience gained from this case study gave us the further empirical validation of 

the TruSStReMark framework and it provided means for next steps of improvements.  

 

5.2 TruSStReMark for Selection and Recommendation   

This subsection contains a discussion of our previous work presented in [92]. As 

indicated earlier, trust is a time dependent feature and hence, its variation over time needs 

to be considered in the selection process. However, most prevalent service S&R schemes 

do not include a trust establishment based on evaluations between the service vendors and 

consumers. Table 5-7 includes two phases where trust establishments happen between apps 

and consumers in marketplaces. These service trust evaluation schemes operate only based 

on quality of service agreements such as, static service level agreements (SLAs). Online 
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apps are affected by the change of the environment conditions, which result in the 

fluctuations of the quality of service offered. 

Table 5-7 Trust establishment phsases of online apps and cosumers 

 

Therefore, we propose a trust evaluation based on the trust between vendors and 

consumers at the time of service S&R. These establishments are based on the aggregated 

views of the trust of the apps and their future rules of engagements to address the 

fluctuations. For example, trust aspects of the evaluation should include information about 

which evidences to consider in quantifying the effects of a service outage. We have 

investigated on how the existing algorithms can be modified based on two phases namely; 

Active Phase and Passive Phase (as described in Table 5-7). An active phase of trust 

evaluation is initiated at the beginning of the service selection. This evaluation is based on 

the current views of the trust of that service which establishes a mutual agreement for 

current and future variations of provided QoS. After the selection (or the recommendation) 

process is completed, as new evidences are available (such as new feature updates and 

releases), the passive phase periodically monitors this trust agreement. If any violations 

(i.e., QoS violations or service outages) are noted then the phase switches back to the active 

and should initiate the re-establishment of trust between entities. 

The main feature of the algorithms that perform service S&R is that they match 

available service specifications (consist of different contracts) with user requirements. The 

TruSStReMark framework considers trust attributes of the available apps targeting their 

Active 

Phase 

Initiates the trust establishments. 

 (Optional agreements on future fluctuations in trust establishments) 

Passive 

Phase 

Periodic communications after the initiation of trust establishments. 

Updates trust establishments by consumers. 
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QoS features. Also, service selection is an expensive and time consuming process, 

especially when the search space is very large. As mentioned in the previous chapter, 

proposed service S&R algorithms are divided in to two phases; one is the off-line phase 

and other is the on-line phase (as described in Figure 5.2). Once the service specifications 

including additionally calculated trust contracts are available for various apps, these 

contracts can be used to improve the S&R process. To perform service S&R, additionally 

trust requirements of a query are matched against available service. 

 

5.2.1 Trust-based Service Selection  

The main two parts of service selection are to perform a search operation to select a 

candidate set and to rank them according to the requirements. The most common approach 

for search and rank is called content-based filtering (CBF). It uses the product description 

and, optionally a profile of the user’s preference. These details are expressed using 

keywords or other types of information such as previous items that the user had liked in 

past, and the user’s location. If such personalized history is not available, then a general 

popularity of items (based on other users’ behavior) is used in cold start situations. A set 

of candidate items are selected and scored based on a criteria (e.g., the number of keywords 

applicable) to rank the final results. A widely used algorithm to identify a set of keywords 

that reflects the summary of given textual corpus is the TF-IDF [86] (Term Frequency and 

Inverse Document Frequency) representation. The CBF algorithm uses a content-based 

profile of items and users based on a weighted vector (e.g., TF-IDF scores of each keyword) 

of item features. The weights denote the importance of each feature to the user or for the 

item in general.  
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Figure 5.6 Content-based filtering approach (CBF-Rank) [92] 

 

Given a set of keywords as a user query, the algorithm initially filters the items based 

on the keywords (i.e., types of item) and then ranks items in their importance according to 

user preference. Figure 5.6 summarizes this approach. A key issue with this approach is 

how effectively the system can apply a user’s feedback to other items for future predictions. 

The popularity of the CBF algorithm is mainly due to its simplicity and low resource 

consumption. Today, given the availability of large computing power with resources, an 

algorithm such as CBF with limited content analysis and limited degree of flexibility for 

updates should be re-evaluated. Given a dataset from a marketplace which includes service 

descriptions, user-service information, and set of reviews by the users, TruSStReMark 

performs improved content-based search and ranking algorithm as follows: for each service, 

the basic content-based algorithm calculates a vector (of size ‘k’ keywords) by parsing the 

service descriptions using a NLP technique such as the TF-IDF. This result is given in a 

sorted order based on the score produced by the TF-IDF algorithm.  
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Figure 5.7 Outline of Trust-based search and ranking (Tr-CBF-Rank) [92] 

Tr-CBF-Rank-Algorithm 
 

Part (1) 

Input: R Reviews of services and D Service Description  

For Each SERVICE (S[] as Service Vector) 

      For All REVIEWS (T as Combined Text Document of R,D)  

 Calculate TF-IDF and select top k  

Output:  S[k] Service Vector (Sorted from TF-IDF score)  
 

Part (2) 

Input: R Reviews of Users and Q Query information   

For Each USER (U[] as User Vector) 

      For All REVIEWS (T as Combined Text Document of R,Q)  

 Calculate TF-IDF and select top k  

Output:  U[k] User Vector (Sorted from TF-IDF score)  
 

Part (3) 

Input: R Reviews of services 

For Each SERVICE (S[] as QoS <B,D,U> tuples){ 

      For Each REVIEW (T as Text)(1 to N)   { 

          For each QoS in S[] { 

              Calculate SENTIMENT of T (Polarity, Subjectivity) 

 Convert (P,S) to <B,D,U> 

              Calculate W - TIME-SENSITIVITY of T (Range 0 to 1) 

    ( ('ReviewDate'-'ServiceFirstAvailableDate') /  

      ('Today'- 'ServiceFirstAvailableDate') ) 

               Update S[i] <B,D,U> (using Consensus Operator) 

                     Based on current <B,D,U> subject to weights of W 

Output:  Updated S[]  
 

Part (4) 

Input: R Reviews of services 

For Each USER (U[] as QoS <B,D,U> tuples){ 

      For Each REVIEW (T as Text)(1 to N)   { 

          For each QoS in U[] { 

              Calculate SENTIMENT of T (Polarity, Subjectivity) 

 Convert (P,S) to <B,D,U> 

              Calculate W - TIME-SENSITIVITY of T (Range 0 to 1) 

    ( ('ReviewDate'-'ServiceFirstAvailableDate') /  

      ('Today'- 'ServiceFirstAvailableDate') ) 

               Update U[i] <B,D,U> (using Conjunction Operator) 

                     Based on current <B,D,U> subject to weights of W 

Output:  Updated U[]  
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Figure 5.6 indicates the places where TruSStReMark is augmenting the process of 

content-based search and ranking algorithm and Figure 5.7 indicates the associated pseudo 

code. Service descriptions may not include all interesting feature keywords for the users 

and TruSStReMark updates this vector by dynamically parsing the reviews for a particular 

service from all the users who have included a review (Part 1 in Figure 5.7). 

 Similarly, TruSStReMark uses these reviews to update the vector of user preferences 

(Part 2 in Figure 5.7). The execution frequency of Parts 1 and 2 can be decided based on 

given criteria, such as, the predefined number of new reviews or the time between updating 

of apps.  From these service vectors and user vectors (each with keywords and their TF-

IDF scores), an important subset of QoS parameters for each service can be identified based 

on a knowledge base (KB).  

 The domain experts manually create these KBs (i.e., both machine and human readable 

of <target domain, set of keywords> tuples) using their domain knowledge about a specific 

domain (e.g., the related entries for a weather related service domain of this KB may 

include: forecast, battery life, user interface, accuracy, cost, reliability etc.).As the next step, 

TruSStReMark keeps an additional vector of <B,D,U> tuples for both of these 

corresponding apps and user preferred QoS lists. These tuple values get periodically 

updated by Part 3 and Part 4 of the algorithm (Figure 5.7). The framework collects the 

evidences about the QoS attributes from reviews. The timeframe of the aggregation is more 

frequent than Part 1, which can be hourly or daily depending on the available resources 

and capacity of the infrastructure which the algorithm executes on. 
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 Figure 5.8 Trust-based search and ranking (Tr-CBF-Rank) [92] 
 

The service vector <B,D,U> tuples are updated based on review sentiments of the QoS 

keyword present in the review, which is based on the calculated sentiments (i.e., based on 

SA to SL conversion presented in Subsection 5.1.3). These service vector tuples are 

updated using the consensus operator of subjective logic, as it is used to combine many 

independent user opinions about the same proposition (i.e., QoS) into a single opinion. 

Also, this adjustment is biased with a weight of the freshness of the review as mentioned 

in Figure 5.7.   

Similarly, the user vector <B,D,U> tuples are updated based on review sentiments and 

the conjunction operator of subjective logic is necessary here, since it is used to aggregate 

two opinions of the same QoS expressed for different apps by the same user to reflect the 

conjunctive truth of both. The main goal of TruSStReMark is to record fluctuations 

associated with the QoS to predict the behavior of the service over an identified set of QoS 

values. We chose to represent and track each QoS value of a software service using these 

Subjective Logic based <B,D,U> tuples from the evidences gathered from user reviews. 
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This approach works without parsing the reviews many times. It can be configured to 

include different vector sizes of apps and user vectors as well as the number of QoS 

additionally tracked based on the domain of the service.  

All the calculations based on trust are carried out during an off-line phase of the 

service search and rank algorithm, however, the querying happens in real-time. When a 

service search query (with QoS values) is presented to TruSStReMark, such as “request: 

weather forecasting service, QoSs: large text and good battery life”. the initial filtering to 

generate a set of candidate apps is done by looking at service vector scores (weather and 

forecasting) for matching keywords and at the same time comparing the <B,D,U> values 

of service QoS features (battery life and large text) which are inferred by the query. Two 

<B,D,U> values are compared by giving precedence to B first, U next, and  D last, such 

that with respect to their QoSs beliefs; highly believable apps appear first, then highly 

uncertain (i.e., neither B or D is prominent) apps appear in the middle and highly dis-

believable apps appear last (referring to the subjective logic-based ordering operator from 

Table 4-3).  

Next, the experiments are carried out to show the improvement in quality of the results 

of service selection when TruSStReMark based selection algorithms are used. Those 

results are then compared with the prevalent CBF approach. The details about these 

experiments and analysis are presented in Subsection 5.3. 

 

5.2.2 Trust-based Service Recommendation  

As mentioned earlier, the inherent features associated with the software domain such 

as frequent updates, execution environment changes, and associated dynamic QoS 
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concerns, make it more challenging to apply these existing product-based recommendation 

techniques to software marketplaces without any modifications. The following section 

presents the work on the TruSStReMark framework to augment and enhance the prevalent 

collaborative filtering based approaches by using the quantification of trust when searching, 

ranking, and recommending software apps.  

Collaborative filtering (CLF) is based on the assumption that item preferences (item-

item) or user preferences (user-user) which are similar in the past will be similar also in the 

future. These systems compare collected data (i.e., user-item relationship matrix which 

contains either binary or integer values, and these values represent that the user purchased 

this item or shows rating given by the user) to calculate a list of candidate items. This is a 

sparse matrix and each row or column vectors are compared to calculate their similarity 

(e.g., using Cosine or Pearson correlation) with each other, in order to calculate user-user 

or item-item similarity matrix (for each entity, the results are prune to include top-k similar 

entities).  

For an item-type or a user preference (depending on its past p entries), a candidate set 

of items (of size p*k) is generated. Finally, a ranking score is calculated for each candidate 

as the sum of cosine similarities of that item with a user’s past p entries to generate a sorted 

list of recommendations. Figure 5.9 summarizes this approach. A key issue with such 

collaborative filtering approaches is that their results often suffer from stability (i.e., takes 

more time to update already stable user preferences or item groups) and hence, there could 

be trust-based concerns about the results, especially when considering apps in an online 

marketplace. Frequent events in a marketplace related to users and apps make the basic 
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ranking and recommendation techniques fall short if they do not include the effect of these 

events using trust based augmentations to their basic recommendation scores. 

 
Figure 5.9 Collaborative filtering approach (CLF-Rec) [92] 

 

The prevalent product-based recommendation systems usually do not consider the 

narrative portion of reviews. TruSStReMark uses these reviews about different QoS 

features of the service, which contain important information about trust (e.g., subjective 

opinion and confidence). It uses these text reviews for trust-based calculations as a part of 

the proposed service recommendation techniques. These techniques are described in Figure 

5.9 and Figure 5.10 as compared to the prevalent collaborative filtering recommendations.  

We follow the approach described in Figure 5.11 to generate data for preprocessing. 

The algorithm now has identified the service and user QoS lists which are then stored and 

their <B,D,U> values periodically updated to keep the system up-to-date. As mentioned in 

the previous subsection, the TruSStReMark framework isolates feature-based sentences 

(e.g., corresponding to UI and battery life) from these reviews and then calculate associated 

sentiments to convert them to <B,D,U> tuples and aggregate them using subjective logic 
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based operators. The main updates happen when the candidate set is selected based on the 

collaborative filtering approach as indicated in Figure 5.10 and Figure 5.11.  

 
Figure 5.10 Trust-based Recommendation (Tr-CLF-Rec) [92] 

 

 

 

Figure 5.11 Outline of Trust-based Recommendation (Tr-CLF-Rec) [92] 
 

For each candidate service, we calculate the cosine similarity using the B,D,U tuples 

to generate the updated and sorted list of recommendations. Next, the experiments are 

carried out to show the improvement in quality of the results of service recommendation 

Tr-CLF-Rec –Algorithm (Cntd - Part 5) 

Input: Set of candidate services  

User’s U[], U[QoS] <B,D,U> tuples 

For Each CANDIDATE SERVICE (S[], S[QoS] <B,D,U> tuples) 

   Calculate Two COSINE Similarity        

       Each based on the vales from  

        - (1) S[] with U[]   

        - (2) S[QoS] with U[QoS]   

If two users are A and B: For each common R rating, 

Then COSINE Similarity: ((Ʃ Ar * Br)/(||A|| * ||B ||)) Where ||A|| = ( Ʃ (Ar)2 )0.5 
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when TruSStReMark based algorithms are applied. Those results are compared with the 

prevalent CLF approach and the experiments and results are presented in Subsection 5.3.  

Until now, this dissertation has defined the trust with respect to a software service, 

proposed a trust model for apps’ lifecycle, and proposed a suitable trust contract for apps 

needed to perform trust-based service operations. It also focused on the long term 

monitoring aspects of trust contract and the benefits associated to service selection and 

recommendation. The focus of the following discussion is to present the required 

algorithmic modifications in service selection and recommendations to get the benefits 

associated with long term monitoring of trust contracts and to experiment with the 

simulated TruSStReMark framework using datasets from Android and Amazon 

marketplaces.  

As mentioned earlier, TruSStReMark defines the trust of a service in a marketplace, 

quantifies the trust by monitoring and aggregating various external evidences, represents 

the trust in the service specification and improves the service selection and 

recommendation algorithms. The simulation environment of TruSStReMark was 

developed by using JAVA (as the main programming language), Python (as the secondary 

programming language), TextBlob (as the library for NLP processing textual data), Apache 

Darby (as the relational meta-database engine), and Apache Tomcat (as the JSP and Servlet 

Container for basic front end views). The parallelization of algorithms was done by porting 

the initial version of the framework to the Hadoop and Spark ecosystems. This environment 

is developed by mainly using Apache HDFS (as the storage for evidences in text format), 

Apache Hadoop (as the batch processing framework), Apache Hive (as the data warehouse 

and storage for caching tables), and Apache Spark (as the streaming processing framework). 
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This prototype was experimented with service datasets from the Android and Amazon 

online marketplaces. Publically available software apps from the Android and Amazon 

marketplaces are used as datasets to empirically evaluate this framework. Next subsection 

describe the experimentations of TruSStReMark andanalyzest the results [90], [89].   

 

5.3 Analysis of Trust-based Selection and Recommendation Algorithms 

 This section provides details of experimentation and analysis of results of the improved 

algorithm of trust-based selection (i.e., search and ranking algorithms of TruSStReMark), 

as compared to the prevalent content-based filtering. There is an additional computational 

cost spent on parsing the reviews and which is justified by the quality improvements of the 

results. We present an empirical study that focuses only on the external views (i.e., reviews 

available in the marketplace) of apps to provide a trust-based search, rank and 

recommendation for a set of queries. To evaluate the approach, we use the Android 

marketplace Review dataset [11] (2389446 reviews of 70000 mobile apps and apps). To 

achieve fair comparisons, the Android marketplace dataset was pruned to only include the 

weather domain, which was then comparable (around 90766 reviews and 3895 apps) to the 

Amazon Dataset (which we use in Section 4.2). The mean number of words for both of 

these datasets is more than 30 words per review. Hence, for the replaceability study, we 

have used the Android marketplace dataset and for the compatibility study we have used 

the Amazon software marketplace dataset [16] as described in Section 4.2.   

     Compared to the prevalent approach of content-based filtering, this candidate set is 

optimized for the query and reflects the narratives about the certain QoS attributes 

expressed by the users. Also, this approach captures the fluctuations of QoS in certain time 
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frames which is an advantage compared to the prevalent fixed approach. Finally, the 

candidate set is ranked first according to user preference score value against the service 

vector scores and then readjusted with service QoS beliefs against user QoS beliefs based 

on the criteria mentioned above (if there exist common QoSs in both the user and the 

service intersection set of QoS vectors). For example, during our experiments we have used 

3,5,10,15 as our user and feature vector sizes and 3 and 5 as user and service QoS additional 

vector sizes.  Example keywords for the Android marketplace dataset of weather apps show 

weather, forecast, 5 day, 10 day for service and user feature vector and Battery, UI, 

accuracy as service and user QoS vectors.  

Using the Android marketplace dataset, the collaborative filtering application is not 

possible, because of the dataset limitations. For example, because the majority of reviews 

are anonymous, the user related data could not be extracted. Available software from the 

Amazon dataset and available apps from the marketplace are assumed to behave as apps 

within our prototypical (TruSStReMark) environment. The goals of the experiments are to 

compare the TruSStReMark based approaches for ranking with the prevalent approach (Tr-

CBF-Rank against prevalent content-based filtering). The automatic spelling correction 

functionality of the TextBlob Library [84] is used before parsing available reviews. 

Randomly ~10% of the data is selected as the test dataset and reset is selected as the training 

dataset. This was performed by picking 10% of the users from the dataset to remove a 

service from each of the selected users (who wrote a positive review about an identified 

QoS in their review) and adding those users’ apps and corresponding reviews to the test 

set. We then parsed the dataset through both the prevalent and TruSStReMark based 

algorithms to generate top-N search and recommendation result sets for each user. If the 
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test service is found in the set of search or recommended apps of the relevant user, it is 

considered as a Hit. Hit Rate (HR) and Average Reciprocal Hit-Rank (ARHR) are 

indications of how well the algorithm performed considering the quality and relative 

position of the results.  This approach was evaluated by parsing the dataset together with 

the algorithm execution to measure the performance. In these experiments, the 

TruSStReMark execution environment was made up of Java and Python running on an 

environment containing Amazon EC2 (Amazon Elastic Computing Cloud) free tier Linux 

t2.micro instance with 64-bit platform support. 

Definitions of HR and ARHR measurements: HR is a measure of the number of the test 

apps that the algorithm included in the results of selection and recommendation. If N is the 

total apps of the test set, then HR = (Number of Hits)/N. Compared to HR, the ARHR is 

capable of evaluating the relative importance of the position in the results of selection and 

recommendation. Hits which are present earlier are weighted higher than the Hits that are 

present later in the result ordering. If Pi is the position of the service of the size N result set 

then, ARHR = (1\N) SUM (1\Pi). The experimentation results include comparisons of the 

result-sets in terms of HR and ARHR metrics for each of the dataset. The following 

subsection explains the analysis of the results with performance comparisons. 

 

5.3.1 Results Analysis of Trust-base Selection  

 Using the Android marketplace dataset, the collaborative filtering application is not 

possible, because of the dataset limitations. For example, because the majority of reviews 

are anonymous, the user related data could not be extracted. Available software from the 
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Amazon dataset and available apps from the marketplace are assumed to behave as apps 

within our prototypical (TruSStReMark) environment.  

Table 5-8  Improvements of HR and ARHR on Android Marketplace [92] 
 

 

 

 

 

 

The goals of the experiments are to compare the TruSStReMark based approaches for 

ranking with the prevalent approach (Tr-CBF-Rank against prevalent content-based 

filtering). The automatic spelling correction functionality of the TextBlob Library [84] is 

used before parsing available reviews. Randomly ~10% of the data is selected as the test 

dataset and reset is selected as the training dataset. 

 
Figure 5.12  HR comparison of Android Marketplace dataset [92] 

Technique /  

Result Set Size Top 3 Top 5 Top 10 Top 15 

CBF (HR) 11.67 21.34 22.6 24.8 

Tr-CBF (HR) 12.22 25.69 30.81 32.62 

CBF (ARHR) 5.3 9.92 10.76 12.4 

Tr-CBF (ARHR) 6.78 14.27 17.11 17.16 
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Figure 5.13 ARHR comparison of Android Marketplace dataset [92] 

 

 

 This approach was evaluated by parsing the dataset together with the algorithm 

execution to measure the performance. The TruSStReMark execution environment was 

made up of Java and Python running on an environment containing Amazon EC2 (Amazon 

Elastic Computing Cloud) free tier Linux t2.micro instance with 64-bit platform support.  

Table 5-8 indicates the percentage improvements obtained by the Tr-CBF-Rank as 

compared to the content-based filtering for the Android marketplace-based dataset. It is 

evident from the Figure 5.12 that the proposed trust-based search and ranking algorithm 

outperforms the prevalent content-based filtering approach in terms of HR. When 

comparing the two approaches, the percentage increase of HR is greater in our approach 

due to association of the QoS of apps. The increase of ARHR in Figure 5.13 shows that the 

proposed trust-based search and ranking algorithm can also provide better ranking of 

results as compared to the prevalent content-based filtering approach.  
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5.3.2 Results Analysis of Trust-based Recommendations   

TruSStReMark uses these text reviews for trust-based calculations as a part of the 

proposed service recommendation technique as compared to the prevalent collaborative 

filtering recommendations. We follow a similar approach as indicated in the previous 

section to generate data for preprocessing. The algorithm has now identified the service 

and user QoSs lists which are then stored and their <B,D,U> values periodically updated 

to keep the system up-to-date. As mentioned above, in the TruSStReMark (in Section 4.1), 

we isolate feature-based sentences (e.g., corresponding to UI and battery life) from these 

reviews and then calculate associated sentiments to convert them to <B,D,U> tuples and 

aggregate them using subjective logic based operators.  

Table 5-9  Improvements of HR and ARHR on Amazon Marketplace [92] 

 

The main updates happen when the candidate set is selected based on the collaborative 

filtering approach Basically, for each candidate service we calculate the cosine similarity 

additionally using the B,D,U tuples to generate the updated and sorted list of 

recommendations.  

Similar to previous subsection, we randomly picked approximately 10% of the users 

from the dataset to remove one service from each of the selected users. Then we pass each 

of the dataset though both prevalent and TruSStReMark based algorithms to generate top-

N search and recommendation result sets for each user. If the test service is found in the 

Technique / 

Result Set Size Top 3 Top 5 Top 10 Top 15 

CLF (HR) 19.17 21.8 24.26 26.72 

Tr-CLF 21.08 23.82 26.65 29.18 

CLF (ARHR) 9.58 10.38 11.55 13.03 

Tr-CLF (ARHR) 10.64 12.53 13.66 15.36 
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set of search or recommended apps of the relevant user, it is considered as a Hit. Hit Rate 

(HR) and Average Reciprocal Hit-Rank (ARHR) are indications of how well the algorithm 

performed considering the quality and relative position of the results (Subsection 4.1.2). 

 
Figure 5.14 HR comparison of Amazon Marketplace dataset [92] 

 

 
Figure 5.15 ARHR comparison of Amazon Marketplace dataset [92] 
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Table 5-9 indicates the percentage improvements of the Tr-CLF-Rec when compared 

with the traditional collaborative filtering recommendations using the Amazon 

marketplace dataset. It is evident from Figure 5.14 that the proposed trust-based 

recommendation algorithm outperforms the prevalent collaborative filtering approach in 

terms of HR.  

The percentage increase in HR is lower in this approach (Tr-CLF-Rec) when 

compared to the Tr-CBF-Rank. However, the Tr-CLF-Rec could be improved and that is 

one of our future directions. Similar to the Tr-CBF, the increase of ARHR in Figure 

5.15shows that the proposed trust-based recommendation algorithm can also provide a 

better relative position of recommendations in its results as compared to the prevalent 

collaborative filtering approach. In summary, by analyzing the results, the percentage 

improvement of ARHR is close to half than that of HR improvements. The percentage 

improvement of ARHR is higher than HR improvement in Tr-CLF-Rec when compared to 

CLF. This shows the importance of QoS consideration in our trust-based approach. 

When this experiments were performed, in our simulated marketplace environment, 

the performance became an issue when new data was generated by our marketplace crawler. 

We compared the runtime variation of the algorithm with the increasing number of reviews 

in the datasets. As the number of reviews increases, both the number of users and number 

of apps also increases. From the comparisons in Figure 5.16, it is clear that both prevalent 

and trust-based algorithms take more time to perform their operations. However the trust-

based selection and recommendation algorithms increase at a much larger rate, due to the 

sentiment analysis and the subjective logic-based calculations of the selected set of QoS-

related sentences. We think that this increase in time can be reduced significantly by 
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parallelizing and running the algorithms.  The natural choice was the MapReduce based 

Hadoop ecosystem and experimenting it on Amazon EMR (Elastic MapReduce) cluster.  

 
Figure 5.16  Aggregated average runtimes of the non-parallel algorithms [92] 

 

Hence, the TruSStReMark framework parallelizes the online and offline parts of this 

algorithm. When a new set of evidence arrives (i.e., as in terms of new reviews which 

explains different service QoS values), the TruSStReMark framework calculates the 

trustworthiness of that current QoS values using the above approach. The details of how 

the framework uses the Hadoop Ecosystem to process these new evidences in parallel and 

how the framework uses the Spark Ecosystem to ingest these new data as a streaming 

solution to improve the performance of the system is discussed in next subsections and 

experimental results and analyses are presented in Chapter 6. 
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CHAPTER 6. PARALLELIZATION OF TRUSSTREMARK ALGORITHMS 

Previous Chapter (i.e., CHAPTER 5) described the approach taken by TruSStReMark 

to perform service selection and recommendation by suggesting algorithmic modifications. 

Although, these two approaches performed better with respect to the quality of the results, 

in empirical evaluations (i.e., as indicated in Subsection 5.3), when used with the larger 

datasets from Amazon and Android marketplaces, they could not offer real-time or near-

real-time performance. This chapter discusses the parallelization of these two approaches 

using the map-reduce paradigm. We note that the processing of reviews, due to their 

independent natures, can occur in parallel and thus achieve better performance. These 

parallelized versions are empirically evaluated using extended versions of publically 

available review data from Amazon Snap dataset and Android marketplace dataset.  

First, we performed and compared the runtime variation of the serialize versions of the 

algorithms (i.e., Tr-CBF-Rank presented in Subsection 5.2.1 and Tr-CLF-Rec presented 

in Subsection 5.2.2) with the increasing number of reviews in the datasets. As the number 

of reviews increases, both the number of users and number of apps also increases. Due to 

this exercise, it was clear that both prevalent and trust-based algorithms take more time to 

perform their operations. However the trust-based algorithms increase at a much larger 

rate, due to the sentiment analysis operations on the reviews, the conversions of 

aggregated sentiments to subjective logic based tuples, and the subjective logic-based 

calculations of the selected set of QoS-related sentences. 
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Therefore, we proposed that this increase in time can be reduced significantly by 

parallelizing and running the algorithms (named pEbRanknRec) using a framework such 

as MapReduce based Hadoop environment using an Amazon EMR (Elastic MapReduce) 

cluster. Additionally, pEbRanknRec is augmenting the process by passing textual reviews 

from users to calculate the sentiment expressed about each user’s targeted QoS properties 

of apps. These QoSs for apps can be calculated from the keywords, from service 

description and from user reviews. Using TextBlob library [84] inside each sentence, the 

algorithm calculates the sentiments of user reviews and cached them. SL provides the 

necessary operators to aggregate different opinions about a service QoS from different 

users depending on the situation. The conjunction, consensus and ordering operators 

(which are listed in Table 4-3) are used in pEbRanknRec algorithms. The positive polarity 

of SA is a measure of belief in the textual evidence and similarly, the negative polarity is 

a measure of disbelief. Naturally then, subjectivity is the indication of certainty when high 

and uncertainty when low. Therefore, without loss of generality, we adapt the linear 

conversion from SA to SL as expressed in Subsection 5.1.3 which describes part of the 

calculations done inside pEbRanknRec algorithms.  

This framework uses the Hortonworks Data Platform (Figure 6.1), which is an open-

source Hadoop distribution with pre-configured packages and tools such as, YARN (i.e., 

the resource and job management engine), HDFS (i.e., Hadoop Distributed File System) 

and HIVE (i.e., the data warehouse infrastructure).  

Periodically during the offline phase, the custom review scrapper loads the most recent 

batch of the reviews from the marketplace to the HDFS. This ETL processing (i.e., Extract, 

Transform and Load) part of the offline phase can be configured to run either hourly, daily 
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or off-peak load times. For example, a MapReduce job runs offline periodically to 

calculate vectors (of size k keywords) by parsing a new service description (i.e., identified 

using unique item id from the reviews) using a NLP technique such as TF-IDF (all data 

structures are cached and reused if no updates detected).  

 

Figure 6.1 TruSStReMark Batch Processing Architecture 
 

Given a review dataset from a marketplace which includes service descriptions, user-

service relations, and set of reviews by the users, the batch processing version of the 

algorithms of pEbRanknRec performs dataset transformation to partition (i.e.,  possible 

due to the review independence property) such that HDFS could handle the correct service 

spaces, user spaces and user-service spaces for each mapper. Also during the offline phase 

MapReduce batch jobs are submitted to extract sentiments (as described in Figure 5.7) 

and load to a structured format in the Hive warehouse, and then convert those sentiments 

to subjective logic based tuples to the appropriate location in the Hive warehouse.  Finally, 

when the new data is available in the hive warehouse, other batch jobs use subjective login 
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operators to update trust vectors in the user space and the service space with a fresh set of 

subjective logic tuples, which are organized by QoSs.  

6.1 pEb-CBF-Rank and pEb-CLF-Rec  

 

Figure 6.2 Online Phase of the evidence-based ranking (pEb-CBF-Rank) 
 

The goal of the online phase of the parallelized TruSStReMark framework (i.e., 

pEbRanknRec approach as indicated in Figure 6.2 and Figure 6.3) is to improve 

performance and confidence while searching and recommending software apps by 

parallelizing the previous algorithms of aggregating external evidences available as textual 

reviews. First, it has a list of named entities for each user (i.e., a profile of important service 

QoS feature keywords). It performs the improved evidence-based search and 

recommendation algorithms (i.e., as indicated in Figure 6.4 and Figure 6.5) in parallel as 

follows: each user query for items/apps/apps is tagged with evidences of these feature 

vectors are used (i.e., which are calculated from users reviews during the offline phase of 

the algorithm). Since, structured data (i.e., user spaces, item spaces and their corresponding 
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trust scores) are available in the data warehouse each mapper can now handle the correct 

service spaces, user spaces and user-service spaces as indicated in Figure 6.4 and Figure 

6.5.  

 

Figure 6.3 Online phase of the evidence-based recommendations (pEb-CLF-Rec) 
 

For each service inside each mapper, the basic content-based algorithm the following 

parts are executed. During the offline phase, we perform the preprocessing parsing stage 

after partitioning and loading data to the HDFS and another set of jobs will generate the 

metadata and load them to the HIVE tables. When a query is forwarded to the system, 

during the online phase of the algorithms, each mapper uses part of the meta-data by 

executing the algorithm to measure accuracy and performance matrixes. Then we randomly 

pick approximately 5% of the users from each dataset to remove one service from each of 

the selected users and we parse each of the dataset though both prevalent and evidence-

based algorithms to generate top-N search and recommendation (S&R) result sets for each 

user. If the test service is found in the set (at any particular rank i) of resulting apps list to 



www.manaraa.com

152 
 

the relevant user then it is considered as a Hit. We use a custom range petitioner to sort the 

candidate set directed to each reducer to produce a globally sorted candidate service set 

based on their confidence scores.  

 

Figure 6.4 Evidence-based search and ranking (pEb-CBF-Rank) 
 

When all the results are obtained, we produce another set randomly to cross validate 

and generate results iteratively to get the average of all matrices. To compare the sequential 

algorithm with the parallel algorithm we use average end-to-end time calculations. In the 

pEb-CBF-Rank: Service Reviews, Descriptions and Query 

For Each Selected Interval (0)(BY Hour, Day, OR Review Size) 

   Push new/updated review data to HDFS  

Each Mapper in Parallel (1) (only for new/updated reviews):  

  For Each SERVICE (S[] as Service Vector) 

    For All REVIEWS (T as Combined Text Document of R,D)  

       Calculate TF-IDF and select top k and cache 

  Cached:  S[k] Service Vector (Sorted from TF-IDF score) 

Each Mapper in Parallel (2): (only for new/updated reviews): 

  For Each USER (U[] as User Vector) 

      For All REVIEWS (T as Combined Text Document of R,Q)  

 Calculate TF-IDF and select top k and cache 

  Cached:  U[k] User Vector (Sorted from TF-IDF score)  

Each Mapper: with S[] (3)  and  with U[] (4) 

  For Each SERVICE (S[]/U[] as QoS <B,D,U> tuples){ 

   For Each REVIEW (T as Text)(1 to N)   { 

     For each QoS in S[]/U[] { 

       In Parallel Calculate SENTIMENT of T (Polarity, Subjectivity) 

       In Parallel Convert (P,S) to <B,D,U> 

         Calculate W - TIME-SENSITIVITY of T (Range 0 to 1) 

          [('ReviewDate'-'ServiceFirstAvailableDate') /  

    ('Today'- 'ServiceFirstAvailableDate')] 

       In Parallel Update S[i]/U[i] <B,D,U> (Consensus OR Conjunction) 

           Based on current <B,D,U> : subject to weights of W 

  Cached:  Produce S*[], U*[] (with evidence <B,D,U>s) 

  // User and Service Space Metadata generation Complete! 

Each Mapper in Parallel: (With respective to Q) 

  For each size k and perform CBF on S[]/U[]  

Each Reducer in Parallel: 

  Produce local candidate set C[k] 

    Locally sorted: C[k] based on search ranking score 

Use custom range practitioner (sort globally) produce C*[k] 
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parallel version of the algorithm, the end-to-end time is measured by combining the 

average mappers time and reducer times in online phase with offline phase.  

 

 

Figure 6.5 Evidence-based Recommendation (pEb-CLF-Rec) 
 

We evaluate each of the result-sets for both pEb-CBF-Rank and pEb-CLF-Rec using 

HR (Hit Ratio) and ARHR (Average Reciprocal Hit-Rank) measurements that are 

commonly used in S&R evaluations. The HR is a measure of the number of test apps that 

each algorithm included in the result-set of S&R. If n is total #apps of the result-set, then 

HR = (Number of Hits)/n. The ARHR is for evaluating the relative significance of the 

position (pi) in the result-set of S&R. Hits which appear earlier are scored higher than the 

Hits that appear later in the result-set ordering. If service is positioned at pi in the result-

set of size n, then ARHR = (1\n) ∑(1\pi). The globally sorted final result-sets are evaluated 

using the rank (i.e., number of 3,5,10,15 or 20 set of apps) by producing 100 times to get 

pEb-CLF-Rec: Service Reviews, Descriptions and Query 

Execute Steps (0)-(3) Cntd Addition to Figure 3  

Each Mapper in Parallel: (only for new/updated reviews):  

  Pass all reviews and augment or update 

  Cached: produce local U-I [] rating vector  

Each Mapper in Parallel: User’s U[], U[QoS] <B,D,U> tuples 

 For Each CANDIDATE SERVICE (S[], S[QoS] <B,D,U> tuples) 

   Calculate Two COSINE Similarity        

       Each based on the vales from  

        - (1) S[] with U[]   

        - (2) S[QoS] with U[QoS] [For Each (B,D,U)]  

    If two users are A and B: For each common R rating, 

    Then COSINE Similarity: ((Ʃ Ar * Br)/(||A|| * ||B ||))  

     Where ||A|| = ( Ʃ (Ar)2 )0.5 

// User-Service Space Metadata generation Complete! 

Each Mapper in Parallel: (With respective to Q) 

  For each size p,k and perform CLF on S-I[]  

Each Reducer in Parallel: 

  Produce local candidate set C[p*k] 

    Locally sorted: C[p*k] based on search ranking score 

Use custom range practitioner (sort globally) produce C*[p*k] 
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the average. Next, the experiments are carried out to show the improvement in quality of 

the results of service selection and recommendation when parallelized TruSStReMark 

based algorithms are applied. Then those results are compared with the prevalent CLF 

approach which are presented in the next Chapter.   

 

Figure 6.6 TruSStReMark Stream Processing Architecture 
 

This section describes TruSStReMark adaptation to the stream processing concepts. 

Since there were improvements with parallelized versions of the algorithms (i.e,. pEb-

CBF-Rank and pEb-CLF-Rec), we also realized that MapReduce based batch processing 

is also limiting the performance of these algorithms. Therefore, we thought that this 

increase in time can be reduced further by running the algorithms using a data streaming 

framework such as Apache Spark based Sparks Streaming oriented processing to replace 

the Apache Hadoop based batch processing framework. Since Spark Streaming can directly 

use HDFS, the overall architecture remains the same (as indicated in Figure 6.6). The 

advantage that stream processing brings is its ability to perform micro-batch based 

transformations, without flushing the data to the disk. For example, earlier, during the batch 
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processing, TruSStReMark executes multiple jobs in batches (e.g., to extract related 

sentiments from QoS of apps using the reviews, to convert sentiments to subjective logic 

based tuples and augment apps’ trust vectors using subjective logic based operators). The 

end-to-end time is measured as indicated earlier to perform each streaming step and 

iteratively to measure the average runtime. The streaming version performs faster which is 

expected due to not having the overhead associated with the batch oriented processing 

associated with MapReduce jobs. For example, each time a batch job executes the results 

are needed to be written to distributed disk such that the next batch jobs have a consistent 

view of the data to preserve the states.  However the streaming version of this does not 

need to write data and preserved them in the distributed version of the memory to perform 

sequence of jobs by having a consistent view of the states. This improves the performance 

of our algorithms while performing the bath oriented jobs to calculate the QoS oriented 

sentiments, to convert them to the associated subjective logic based tuples, and then update 

the service trust scores using subjective logic based operators. The experiments are 

performed with this improved stream processing architecture using Amazon EMR (Apache 

Spark with Spark Streaming) clusters. The results and analysis are discussed in next 

subsections.  

 

6.2 Results and Analysis of pEb-CBF-Rank and pEb-CLF-Rec 

To empirically evaluate this parallelized approach, we increase the size of data to 10 

times the size of both the sequential experiments datasets (i.e., when algorithms perform 

inside a single instance).  We then apply Search/Ranking (pEb-CBF-Rank) to the Android 

marketplace Review dataset [10] (which now includes 34,169,077 reviews of mobile 

2,702,594 apps and apps) and apply Recommendation techniques (pEb-CLF-Rec) to the 
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Amazon Marketplace Reviews dataset [9] (which now includes Reviews 34,686,770 

reviews of products 2,441,053) respectively. Both datasets had around 6 million users, 

users > 50 reviews more than 50 thousand, 80 median words per review and timespan Jan 

1995 – October 2016. Our experimental setup was made up of Java and Python running on 

an environment containing Amazon EC2 (Amazon Elastic Computing Cloud) free tier 

Linux t2.micro instances with 64-bit platform support, 15 node EMR (Elastic MapReduce) 

Cluster running version 2.4 Hadoop. 

Also, we present the results from the experiments conducted with a parallel version of 

the trust-based selection algorithm (i.e., pEb-CBF-Rank).  For the search/ranking study we 

used the Android Marketplace dataset. The experiments compare the evidence-based 

approach for search/ranking with the prevalent approaches of Content-based filtering (i.e., 

CBF and sequential sEb-CBF-Rank, with parallel pEb-CBF-Rank). Table 6-1 indicates the 

HR and ARHR percentage improvements obtained by these approaches against Android 

marketplace-based dataset. It is evident from Figure 6.7 that the proposed parallel 

evidence-based search and ranking algorithm performs better than the prevalent content-

based filtering (CBF) algorithm. This is equally true with its sequential approach in terms 

of HR and ARHR given the advantage of generating the results in real-time. We perfumed 

the algorithms iteratively 100 times to get the average of quality matrices including the 

average runtime. Since, we randomly take a portion of the dataset out to cross validate the 

results at each step there is a slight difference between the sequential and parallel version 

of the results. However they perform nearly within the same range of values when we 

average the results. 
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Table 6-1 Percentage improvements of pEb-CBF-Rank 

Technique / 

Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

CBF (HR) 11.67 21.34 22.67 24.81 26.72 

sEb-CBF-Rank (HR) 12.22 25.69 30.81 32.62 33.9 

pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65 

CBF (ARHR) 5.3 9.92 10.76 12.4 12.86 

sEb-CBF-Rank (ARHR) 6.78 14.27 17.11 17.38 17.92 

pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56 

 

 
Figure 6.7 HR and ARHR comparison of pEb-CBF-Rank 

 

Next, we present the results from the experiments conducted with parallel version 

of the trust-based recommendation algorithm (i.e., pEb-CLF-Rec).  For this 

recommendation study we used the Amazon Marketplace dataset. The experiments 

compare the evidence-based approach for search/ranking with the prevalent approaches of 

Collaborative filtering (i.e., CLF, sequential version (sEb-CLF-Rank), and parallel version 

(pEb-CLF-Rec) of the algorithms).  
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Table 6-2 Percentage improvements of HR and ARHR of pEb-CLF-Rec 
Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

CLF (HR) 19.17 21.8 24.26 26.72 30.72 

sEb-CLF-Rec (HR) 21.08 23.82 26.65 29.18 32.18 

pEb-CLF- Rec (HR) 20.64 23.13 25.95 28.58 31.38 

CLF (ARHR) 9.58 10.38 11.55 13.03 15.03 

sEb-CLF- Rec (ARHR) 10.64 12.53 13.66 15.36 18.36 

pEb-CLF- Rec (ARHR) 9.93 12.02 13.21 14.89 17.52 

 

 
Figure 6.8 HR and ARHR comparison of pEb-CLF-Rec 

 

Table 6-2 indicates the HR and ARHR percentage improvements obtained by these 

approaches against the Amazon marketplace-based dataset. It is evident from the Figure 

6.8 that the proposed parallel evidence-based search and ranking algorithm perform better 

than the prevalent collaborative filtering approach (CLF) and equally with its sequential 

approach in terms of HR and ARHR given the advance of it performs in real-time. In 

summary, by analyzing the results, the percentage improvement of HR and ARHR is equal 

to prevalent approaches given the results were generated in near real-time. Again, as 

mentioned previously, we randomly take a portion of the dataset out to cross validate the 
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results at each step there is a slight difference between the sequential and parallel version 

of the results. However they perform nearly during the same range of values when we 

average the results. This shows the importance of QoS consideration in our evidence-based 

approach in real-time, and this validates our approach. 

As an additional step to verify the behavior of sequential and parallel version of the 

algorithms, we removed the random portion of the dataset partitioning. At each iteration of 

the experiment, both the sequential and parallel algorithms now receive the same test and 

training data without random selection between the approaches by manually overriding the 

data in HDFS. The experiment was performed 100 times to get the average values of both 

HR and ARHR matrices and Figure 6.9 indicates results of this additional experiment. As 

expected the results indicates that both sequential and parallel algorithms were able to 

produce the same HR and ARHR values, since they both received the same set of data sets.   

 

Figure 6.9 Results comparison of pEb-CBF-Rank without randomization  
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6.3 Results from converting batch processing to stream processing   

Table 6-3 indicates the HR and ARHR percentage improvements by comparing the 

batch oriented version of the pEb-CBF-Rank (i.e., bt-pEb-CBF-Rank) to stream oriented 

version of the pEb-CBF-Rank (ie., st-pEb-CBF-Rank). As indicated earlier the slight 

differences are due to the random requirement of data partitioning to training and test 

datasets which is mandatory to calculate the HR and ARHR measures.  

Table 6-3 HR and ARHR on batch and streaming experiments of pEb-CBF-Rank 

Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

bt-pEb-CBF-Rank (HR) 11.76 25.32 30.14 32.22 33.65 

st-pEb-CBF-Rank (HR) 12.34 24.05 31.64 30.60 31.96 

bt-pEb-CBF-Rank (ARHR) 5.42 13.76 16.87 17.16 17.56 

st-pEb-CBF-Rank (ARHR) 5.69 13.07 17.713 16.30 16.68 
  

Figure 6.10 indicates these results in graphical notation. As expected we concluded 

that apart from the slight differentiation of the quality measures due to the random 

requirements in calculating HR and ARHR, the batch and streaming version of the trust-

based selection algorithms performs equally well in quality matrices.  

 

Figure 6.10 Quality comparison of bt-pEb-CBF-Rank and st-pEb-CBF-Rank 
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Similarly, Table 6-4 indicates the HR and ARHR percentage improvements by 

comparing the batch oriented version of the pEb-CLF-Rac (i.e., bt- pEb-CLF-Rac) to 

stream oriented version of the pEb-CLF-Rac (ie., st- pEb-CLF-Rac). As indicated earlier 

the variations of the values are due to the randomness of the data partition while calculating 

the quality matrices. 

Table 6-4 HR and ARHR on batch and streaming experiments of pEb-CLF-Rac 

Technique / Result Set Size Top 3 Top 5 Top 10 Top 15 Top 20 

bt-pEb-CLF-Rec (HR) 20.64 23.13 25.95 28.58 31.38 

st-pEb-CLF-Rec (HR) 19.60 24.28 27.24 27.15 29.81 

bt-pEb-CLF-Rec (ARHR) 9.93 12.02 13.21 14.89 17.52 

st-pEb-CLF-Rec (ARHR) 9.43 12.621 13.87 14.14 16.64 

 

 

Figure 6.11 Quality comparison of bt-pEb-CLF-Rec and st-pEb-CLF-Rec 
 

Figure 6.11 indicates the trust-based recommendation algorithms versions of the batch 

and streaming results in graphical notation. As expected we concluded that HR and ARHR 

matrices of the batch and streaming version of the trust-based recommendation algorithms 

performs equally well.  
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6.4 Performance and runtime analysis of the algorithms 

 

We evaluated the performance of the pEb-CBF-Rank and the pEb-CLF-Rec against 

prevalent approaches. Since the main concern is performance of the algorithms, we 

compared the runtime comparison of algorithms (prevalent CBF/CLF with both sequential 

sEb-CBF/CLF-Rank/Rec, and parallel pEb-CBF/CLF-Rank/Rec) with the increasing 

number of reviews in the datasets. As the number of reviews increases, both the number of 

users and number of apps also increase.  

To compare the sequential algorithm with the parallel algorithm we use average end-

to-end time calculations. In the parallel version of the algorithm, the end-to-end time is 

measured by combining the average mappers time and reducer times in the online phase 

with the offline phase.  

 

Figure 6.12 Aggregated average runtimes of the parallel algorithms 
 

 



www.manaraa.com

163 
 

Also, caching experiments are performed by directly using the HIVE meta-data store. 

From the comparisons in Figure 6.12, it is clear that both prevalent and trust-based 

algorithms take more time to perform their operations. Since, the sequential evidence-based 

S&R algorithms increase at a much higher rate, due to its additional calculations. Our 

parallelized algorithms using MapReduce/Hadoop environment perform equally when the 

dataset size is much larger. Each data set inside the local node of the cluster is small hence, 

it was able to efficiently perform the algorithm locally in order to produce global results. 

 

Figure 6.13 Aggregated average runtime of batch vs streaming approaches 
 

Figure 6.13 indicates analysis about streaming versions of the algorithms in terms of 

average runtime compared to average runtime of the batch processing versions of the 

algorithms. The streaming version performs faster which is expected due to not having the 

overhead associated with the batch oriented processing that MapReduce jobs require. Each 

time a batch job executes the results need to be written to a disks which are distributed such 

that the next batch jobs have a consistent view of the data in order to preserve the states. 

We also noted that the gap is being widen when the number of reviews are increased. This 
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is also expected, as when the load increases the stream processing performs much better 

than batch oriented processing version of the algorithms.  

In Summary, using the TruSStReMark framework we suggested algorithmic 

modifications necessary to parallelize and perform evidence-based search and 

recommendation (S&R) of apps. The framework uses datasets from Amazon and Android 

marketplaces. The two parallel algorithms (i.e., pEb-CLF-Rec and pEb-CLF-Rec) in the 

pEbRanknRec algorithms were executed using an EMR environment in AWS using 

Hadoop echo-system. The main algorithmic calculations are based on sentiments from the 

large volumes of textual reviews, which are then numerically converted to subjective logic 

based BDU tuples to apply aggregation operators). Hive warehouse is used as the caching 

meta-store, where algorithms (i.e., st-pEb-CLF-Rec and st-pEb-CLF-Rec) quickly find the 

aggregated trust scores of QoS related to apps. When compared to prevalent approaches 

the results indicate that parallelized algorithms improve the average performance of the 

trust-based algorithms and were able to generate better or equally well with both datasets 

in terms of HR and ARHR. Next, the batch processing part of the Hadoop jobs are 

streamlined using Sparks streaming techniques. When compared to the batch oriented 

technique, the stream oriented algorithms (i.e., st-pEb-CLF-Rec and st-pEb-CLF-Rec) 

were able to perform equally well with the advantage of reduced aggregated average 

runtimes. The advantage of our approach is that it is based on heterogeneous and dynamic 

software features (QoSs) of apps that enable better temporal comparisons between software 

apps. The results of this study indicate that the evidence-based approaches provide better 

selections and recommendations both in terms of quality and relative ranking of apps.  
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CHAPTER 7. CONCLUSION AND FUTURE WORKS 

This dissertation has described techniques to model, quantify, specify, and monitor 

the trust of software apps. It also provides methods to analyze, and aggregate, external 

reviews of software apps and uses them to perform trust-based service selection, and 

recommendation. We present four contributions, which extend the current state of the art 

with respective to the trust of software apps in online marketplaces. The list of 

contributions are: 

• Surveying prevalent trust-related views and associated models to define and quantify 

the trust of a service.  

• Extension of multi-level software specifications to represent trust-based attributes.  

• TruSStReMark framework to perform trust-based monitoring, selection, and 

recommendation.  

• Performance improvement to achieve real-time query processing. 

 

Below we present the summary of our achievements in each of these four contributions.   

• Surveying existing trust models for software apps: 

We identified and analyzed different interpretations of trust in distributed software 

systems spanning over 25 years. We also categorized differences and commonalities of 

various prevalent trust views and models. These categories show that the community has 

accepted inherent attributes of trust such as subjectivity and uncertainty. 
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It also shows that important factors such as reputation of both truster and trustee, 

truster’s willingness to be vulnerable, trustee’s willingness to acquire benefits from truster, 

and functional and QoS capabilities of both truster and trustee are overwhelmingly 

accepted by the community. The result of this survey indicated that the presence of many 

models having their own view of trust (e.g., application specific view, and targeting a 

specific phase of the software life cycle), makes it a significant challenge for any two trust 

models to exchange information.  

Therefore, we have suggested, in this dissertation, a set of principles that are necessary 

to understand and evaluate trust in software-intensive systems throughout their entire life-

cycle. These eight trust principles are requirements, representation, associated knowledge 

base, specification, comparison and selection, countermeasures, composition, and 

evaluation associated with the life-cycle of software apps. As a case study to show the 

application of the principles, we have applied them to a set of apps that form a distributed 

tracking system.  

• Extension of multi-level specifications to represent trust-based attributes  

Our framework, TruSStReMark, represents trust of software apps.  It uses the concepts 

of theory of evidence, subjective logic, sentiment analysis, and multi-level specifications 

to define a trust contract for software apps. The proposed trust contract extends the multi-

level contract techniques to include the trust as a critical factor while developing apps. 

Furthermore, it presents how to quantify trust related attributes to improve trustworthy 

service selection and recommendation. 

The TruSStReMark framework focuses only on using external evidences available 

from the user reviews to quantify trust of apps in a marketplace, mainly due to the lack of 
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publically available internal evidences associated with apps. TruSStReMark processes 

available  reviews of each service and captures the expressed sentiments about the  

important non-functional attributes and quantifies them using subjective logic-based 

<B,D,U> tuples (i.e., <Belief, Disbelief, Uncertainty> notation). This approach uses 

sentiments of the sentences, which describe non-functional qualities of each service and 

converts them from sentiment values (+/-polarity, subjectivity) to subjective logic tuples. 

Then, it aggregates these quantified <B, D, U> tuples using suitable operators available 

from subjective logic (e.g., consensus and conjunction operators) to create a single tuple 

for each service. This <B,D,U> tuples form the basis of the trust contract of a service. 

This trust contract extends the concepts of multi-level specifications with an additional 

level denoting the trust values. The reason for that is, it resides after the negotiable QoS 

attributes of the service specification. The quantified and aggregated values of identified 

trust attributes which are presented in this trust contract (as subjective logic based tuples), 

contain references for other related attributes from existing levels (e.g., the trustworthiness 

of a service’s QoS values). Since this contract enables long term monitoring and 

aggregation of trust associated with software apps, it can improve the performance of 

service selection and recommendations.  

• Experimenting with the TruSStReMark framework 

The TruSStReMark framework aggregates the above mentioned evidences into a trust 

contracts, then it performs trust-based service selection and recommendation using our 

proposed algorithms, which make efficient use of these trust contracts. As a part of our 

TruSStReMark framework, we suggest modifications and enhancements of the two 

prevalent algorithms (CBF and CLF) to include trustworthy service selection and 
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recommendation principles. Our algorithms enable updating trust values to cater dynamic 

nature of apps and enable continuous monitoring of the trustworthiness of apps. 

Our trust-based selection and recommendation approach has two main advantages. It 

broadens the spectrum from the single-dimensional analysis of apps (i.e., star rating of apps) 

to a multi-dimensional analysis (i.e., aggregating of trust-based attributes of apps), which 

may lead to further interesting discoveries, and it also enables comparisons between 

software apps based on different QoS features of apps. The experimental results indicate 

that the trust-based approaches provide better selections and recommendations of software 

apps both in terms of quality, relevance and relative ranking of the result-sets. Specifically, 

our approach performs better than prevalent approaches when used with two publically 

available datasets using root mean square error, precision, and recall, Hit-Rate (HR), and 

Average Reciprocal Hit-Rate (ARHR) metrics.  

• Performance improvements of the TruSStReMark framework 

Publically available apps from the Android and Amazon marketplaces are used as the 

input datasets during the experimentation of the proposed framework. As the number of 

apps and number of parallel queries increases, both online and offline phases of the trust-

based algorithms need to be enhanced with parallelization techniques to produce results in 

real-time. The performance constraints of increased time required by the trust-based 

algorithms are addressed by parallelizing both during offline phase (i.e., ETL -Extract, 

Transform and Load, categorization and organization of evidences) and online phase (i.e., 

execution of the algorithms to analyze evidences in real-time). The online phase uses the 

data warehouses to generate and update metadata related to trust contracts and to perform 

analysis (i.e., execution of the algorithms to analyze evidences in real-time). The 
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TruSStReMark is parallelized using MapReduce concepts with the Apache Hadoop 

ecosystem (i.e., experiments are performed in using Amazon EC2 with Amazon EMR at 

AWS). Also, the external evidences are in Hadoop Distributed File System (HDFS) and 

executing MapReduce jobs regularly to update the trust-based scores and service metadata 

used by the real-time queries. This enables processing of parallel queries from many 

different users by analyzing a large number of apps which improves the performance to 

produce results in near real-time. 

Further analyses of these algorithms revealed the batch-oriented operations in Hadoop 

is a bottleneck and hinders the overall performance. Hence, we reduced the Hadoop-based 

batch-oriented processing with the adaptation of Spark and Spark Streaming techniques. 

This improves the efficiency of both online and offline phases.  

There are many possible future directions of the techniques presented in this dissertation. 

For example, a possible future direction related to the proposed trust model is to apply and 

evaluate this model to other complex software systems. Future explorations in the area of 

the proposed trust contract include, experimenting with different trust representations, 

investigating contracts that are incomplete and/or are missing critical information, 

analyzing trust aspects on specifications in different domains such as economics contracts, 

and legal contracts. Other possible future directions include improving the degree of 

certainty in predicting trust value of a composed systems, incorporating domain knowledge, 

and learning compatibility of apps dynamically, explore other similarity measurement 

techniques of apps, and investigate group-based selection and recommendation techniques.  
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Appendix A Trust in other domains [13] 

This Appendix contains a discussion of trust in other domain from our survey paper 

[13]. Trust an important concept that has taken on different views over time. Any definition 

of trust is typically biased towards the problem under investigation and the context of the 

application domain. For example, the following brief summary contains trust perceptions 

in other domains, namely legal, sociology, psychology, economics and philosophy.  

In the legal domain of Law and Justice, the trust is a relationship between three parties 

where this property is transferred by one party to be held by another party for the benefit 

of a third party. Hence, a trust is established by a settlor, who transfers some or all of his 

property to a trustee, who holds that trust property (or trust corpus) for the benefit of the 

beneficiaries. In the legal domain of sociology the trust is related with the position and role 

of entities in social systems. In the domain of psychology, trust is believing that the person 

whom is trusted will do what is expected. It starts small with one entity and grows to others 

which results in feelings of security and trust, while failure results insecurity and mistrust. 

In the domain of economics, the trust is perceived as the difference between actual human 

behavior and the behavior expected by the individual. However, in philosophy many claim 

that trust is more complex than a human association and they also distinguish trust and 

dependence by indicating that trust can be betrayed and reliance. Constructive type of trusts 

is not depend on the expressed intentions of all parties involved and it is employed by 

courts to prevent inequality or injustice.  
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Appendix B Physical Products Vs Software Apps [91] 

The below table presents a brief comparison between physical products and two 

popular online software apps, which was presented in [91]. As seen from the table, it is 

evident that updates are frequent for apps and maybe hidden from the users. In contrast, if 

there are any updates to physical products, they are usually visible to the users. Also, in 

case of apps, the payment method is usually based on subscriptions and includes an explicit 

agreement between the provider and the user. Such an agreement usually transfers the 

responsibility is to the user (“caveat emptor”). These two aspects alone provide a basis to 

negatively answer the first question raised in Section 1 and make a case for exploring the 

second question in more details. 

Comparison between physical products and online software apps. 

Criteria 
(Example) 

Mobile App 
(Yahoo 
Weather1) 

Software 
Service 
(LifeLock2) 

Movie DVD 
(RoboCop3) 

Consumer Product 
(Rolex4) 

Purpose Weather 
Forecast 

Identify Theft 
Protection  

Entertainment  Wearable 
Timepiece  

Payment 
Method 

Free / Monthly 
Subscription  

Monthly 
Subscription  

One Time Onetime 

Include 
Software 

Yes Yes No No 

Change 
over time 

Periodical 
Updates 

Periodical 
Updates 

Then yield a 
sequel  

Yield new product   

 

This initial negative reaction to the first question is strengthened by following 

additional observations: i) inherent features of apps, many of which are time and execution-

environment dependent, do not lend themselves to fit the “fixed-attribute-based 

descriptions” of typical consumer products – for example, most  physical products have 

time-invariant features such as, the weight and dimensions; ii) unlike physical products, 
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most apps are described using a programmatic interface (which could be multi-level) along 

with a set of quality of service (QoS) parameters. These QoS parameters are typically time 

and execution environment sensitive, thus, making apps to be quite different from physical 

products;  iii) the selection of a physical product usually happens in isolation – unlike a 

service that may be selected and combined with other compatible apps, based on the need 

of the application, to generate a complex distributed software system; and iv) physical 

products have a well-defined lifetime (indicated by their sell by date, expiration date and 

warranty period), while a service is assumed to run and evolve from its initial release with 

continuous updates. Hence, the specification and associated opinions available about a 

service need to be evaluated in a time sensitive manner if any recommendations are to be 

provided to a user.  

As a consequence of these inherent complexities, any good service selection or 

recommender system for the software apps domain must tackle all these complexities 

effectively, which the prevalent product-oriented recommendation systems do not address. 

These abovementioned challenges, hence, suggest a slightly different approach while 

recommending software apps – one which considers trust (defined in the next section) 

about a service to be the central feature. In this dissertation, we describe a framework called 

TruSStReMark which aims to provide a comprehensive service selection framework 

targeting online applications and apps.  

  

  



www.manaraa.com

181 
 

VITA 

 

 

 

 

 

 

 



www.manaraa.com

181 
 

VITA 

 Lahiru Sandakith Gallege  

Full Name: Lahiru Sandakith, Pileththuwasan Gallege 

Place of Birth:  Ahangama, Galle, Sri Lanka. 

  

Education:        

  December, 2016 Doctor of Philosophy, Computer Science, Purdue University (IUPUI), 

Indianapolis, Indiana, USA. 

   May, 2011 Master of Science, Computer Science, Purdue University (IUPUI), 

Indianapolis, Indiana, USA. 

   August, 2005 Bachelor of Science, Computer Science and Engineering   University of 

Moratuwa, Sri Lanka. 

  

Experience:   

  Sept 2015 - Present Senior Data Scientist, Customer Analytics, KPMG LLP / Link Analytics 

LLC, Knoxville, TN, USA. 

  May 2014 - Aug 2014 Software Engineering Intern, Angie's List Inc, Indianapolis, USA. 

  May 2011 - Aug 2011 Rosen Center for Advanced Computing, Purdue University, West 

Lafayette, USA. 

  Aug 2008 - May 2015 Teaching/Research Assistant, Indiana University - Purdue University, 

Indianapolis (IUPUI), Indianapolis, USA. 

  May 2006 - Jul 2008 Senior Software Engineer, WSO2 Inc, Colombo, Sri Lanka. 

  

Honors/Affiliations:  

    School of Science Teaching Assistant Award - Computer Science (IUPUI), 2015. 

    Gersting Award for an Outstanding Graduate Student - Computer Science (IUPUI), 2015. 

    Outstanding Computer Science Undergraduate Award, University of Moratuwa, Sri Lanka, 2005. 

    Open Source Project Contributor/Committer for the Eclipse Foundation - WTP (Web Tools Platform). 

    Open Source Project Committer/PMC for the Apache Software Foundation – Apache Axis2 Tools. 

 


	01Lahiru-gs-form30_Cover
	LahiruGallegeDissertation1206v1
	CHAPTER 1. INTRODUCTION
	1.1 Thesis Statement
	1.2 Thesis Objectives
	1.3 Thesis Organization
	1.4 Thesis Contributions

	CHAPTER 2. RELATED WORKS
	2.1 Trust Views and Trust Models [13]
	2.2 Specification and Trust Contract of a Software Service
	2.3 Trust-based Service Selection
	2.4 Trust-based Service Recommendation

	CHAPTER 3. BACKGROUND RELATED TO OUR APPROACH
	3.1 Past Work
	3.1.1 URDS and Multi-level Contracts
	3.1.2 Service Discovery and proURDS

	3.2 Related Background Concepts
	3.2.1 Theory of Evidence [22]  and Subjective Logic [23] [77]
	3.2.2 Sentiment Analysis Concepts [25] [83]
	3.2.3 Content-based and Collaborative Filtering [16] [17]
	3.2.4 Big Data Analytics Concepts [79]


	CHAPTER 4. TRUSSTREMARK APPROACH
	4.1 Motivation for TruSStReMark framework
	4.2 Shortcomings of Prevalent Approaches and Associated Challenges
	4.3 Overview of TruSStReMark Framework
	4.4 Trust Views and Trust Model [13]
	4.4.1 Trust Views of a Software Service
	4.4.2 Trust Model of a Software Service
	4.4.3 Trust-based principles for reusing services

	4.5 Trust Representation in the specification
	4.5.1  Structure of the proposed modifications to service specification
	4.5.2 Structure of the proposed Trust Contract
	4.5.3 Benefits of Long term aggregation of trust attributes.

	4.6 Quantification and Specification of Trust for Apps
	4.6.1 Case-study from an online marketplace
	4.6.2 Analyses of Data Aggregation and Presentation


	CHAPTER 5. TRUST-BASED SELECTION AND RECOMMENDATION
	5.1 Selection and Recommendation of Trust for Apps
	5.1.1 Structure of Selection and Recommendation Algorithms
	5.1.2 TruSStReMark framework applied to marketplaces
	5.1.3 Conversion of SA to SL
	5.1.4 Initial case-study on Trust-based Recommendation

	5.2 TruSStReMark for Selection and Recommendation
	5.2.1 Trust-based Service Selection
	5.2.2 Trust-based Service Recommendation

	5.3 Analysis of Trust-based Selection and Recommendation Algorithms
	5.3.1 Results Analysis of Trust-base Selection
	5.3.2 Results Analysis of Trust-based Recommendations


	CHAPTER 6. PARALLELIZATION OF TRUSSTREMARK ALGORITHMS
	6.1 pEb-CBF-Rank and pEb-CLF-Rec
	6.2 Results and Analysis of pEb-CBF-Rank and pEb-CLF-Rec
	6.3 Results from converting batch processing to stream processing
	6.4 Performance and runtime analysis of the algorithms

	CHAPTER 7. CONCLUSION AND FUTURE WORKS
	Appendix A Trust in other domains [13]
	Appendix B Physical Products Vs Software Apps [91]



